

Calculation of thermoplastic tanks and apparatus – Vertical cylindrical non-pressurised tanks

(August 1997)

active pressures as well as the hydrostatic loading. The following

D V S

Contents:

	nts.			t the limiting values:
1	Scope		•).0005 N/mm² (0.005 bar)
2	Calculation values			0.0003 N/mm² (0.003 bar)
3 3.1	Loadings Permanent loading	•		
3.1.1	Total inherent loading	effectiv	•	active pressures are only applicable if they can be
	Loading of the filling agent	enectiv	е.	
3.1.3	Internal and external pressure	Limitati	on of the	e main dimensions:
3.2	Medium-term active loadings	Tank d	iameter:	d ≤ 4 m
3.2.1	Snow loading	Ratio:		$h/d \le 6$
	Summer temperature	Minimu	ım wall th	nicknesses:s = 4 mm
3.3	Short-term active loadings	The re-	cnoncibil	ities of certain fields of laws (e.g. building laws,
3.3.1 3.3.2	Internal and external pressure Loading on the roof due to personnel			water, law relating to protection of labour) are to
3.3.3	Wind loading		en into ac	
3.3.4	Pulsation equivalent stress due to wind loading			
3.3.5	Depression due to wind suction			
3.3.6	Installation loadings	2 Cal	culation	values
3.4	Temperature			
4	Design calculation	а	mm	depth of the weld seam
4.1	Proof of strength	A ₁		reduction factor for the influence of the specific
4.1.1	Effects			viscosity (see DIN EN 1778)
4.1.2	Overlapping of effects Shell	A ₂		reduction factor for the medium at proof of soli-
4.1.4	Base	٨		dity reduction factor for the medium at proof of stabi
4.1.5	Welding joints between base and shell	A _{2I}		reduction factor for the medium at proof of stabi- lity
4.1.6	Conical roof	Δ_	mm²	surface of the base
4.1.7	Nozzles	A _B A _D	mm ²	surface of the roof
4.1.8	Anchorages	_	m²	working surface of the wind (partial surface)
4.1.9		A _j Az	mm ²	shell surface of the cylinder
4.2	Proof of stability	_	mm	width of the claw
4.2.1	Overlapping of effects	b _{Pr} b≭	mm	width of the lifting lug
4.2.2 4.2.3	Shell Conical roof	b _Ö c	-	correction coefficient of the wind according to
4.2.3 5	Annex	U	-	DIN 1055, part 4
5.1	Explanations	С	-	$C_1 \cdot C_2$
5.2	Standards and directives	C ₁	-	load increase factor
5.3	Literature	C_2	-	material specific design factor
5.4	Temperature and time-dependent elasticity moduli for	C*		correction coefficient for the external pressure
	stability calculation	Ū		charged circular cylinder
5.5	Construction details	d	mm	nominal inside diameter
		d _A	mm	nozzle outside diameter
1 Sc	оре	d	mm	diameter of hole in lifting lug
		d _{max}	mm	maximum diameter of the cylinder
The f	ollowing rules for the design and calculation apply to	d _{min}	mm	minimum diameter of the cylinder
	al, cylindrical, work shop fabricated flat-bottom tanks of	d _{Sch}	mm	diameter of the shackle
thermo	oplastic materials, in particular	EK	N/mm ²	elastic modulus at short-term loading for T°C
– Polv	vinyl chloride (PVC-U)		N/mm2	elastic modulus at short-term loading for 20°C
	rpropylene (PP)	Ξĸ		•
– Poly	vethylene (PE)	E ^{20°C}	N/mm ²	elastic modulus at long-term loading for 20°C
– Poly	vinylidene fluoride (PVDF)	f _s	-	long-term welding factor
The cv	lindrical shell with constant or varying wall thickness may	f _{sD}	-	long-term welding factor for the roof
	de of welded plates or a wound cylinder or an extruded	fz	-	short-term welding factor
	· · ·	f _{zD}	-	short-term welding factor for the roof
pipe.				J

This publication has been drawn up by a group of experienced specialists working in an honorary capacity and its consideration is recommended. The user should always check to what extent the contents are applicable to his particular case and whether the version on hand is still valid. The Deutscher Verband für Schweißtechnik e.V. and those involved in preparing this publication are exempt from any liability.

DVS, Technical Committee, Working Group "Plastics, Welding and Bonding"

Orders to: DVS-Verlag GmbH, P. O. Box 10 19 65, 40010 Düsseldorf, Germany, Phone: +49(0)211/1591-0, Telefax: +49(0)211/1591-150

Page 2 to DVS 2205-2

9a	N/mm²	equivalent surface loading for nozzles etc. on the roof	s _o	mm	wall thickness of the upper band of the equiv lent cylinder
g _D	N/mm ²	surface related weight of the roof	S	-	safety coefficient
G _A	Ν	inherent loading of the extensions	S _M	-	safety coefficient at installation
З _В	Ν	inherent loading of the base	Τ <mark>Α</mark>	°C	temperature of the outside air
3 _D	N	inherent loading of the roof	TD	°Č	temperature of the roof
ς ΞΕ	N	total inherent loading	TM	°Č	contents' temperature
3 _F	N	loading of the filling agent	Tw	°Č	temperature of the collecting tank wall
•	N	snow loading	Tz	°Č	temperature of the tank wall
G _S	N	inherent cylindrical loading		%	allowable ovality
Gz		height of the tank	u V		
n	mm	5		m³	filling volume
n _F	mm	height of the filling level	VA		weakening coefficient
n _{F,i}	mm	height of the filling level of band i	w _{gr}	mm	allowable hoisting course (= 10 mm)
h _{Z,i}	mm	height of the band i	Wj	kN	wind loading
h _{RF}	mm	residual height of the filling level	Z	-	number of anchors
η _Z	mm	cylindrical height	α	-	auxiliary value
h _{ZF}	mm	height of the lower band	α_{D}	degree	angle of inclination of the roof
К ^{vorh}	N/mm ²	short-term active stresses	β	-	coefficient
K ^{vorh}	N/mm ²	long-term active stresses	δ	-	coefficient
	1 1/11111	long-term active stresses	δ_w	-	coefficient
Км	N/mm ²	medium-term active stresses	δ_{σ}	-	coefficient
*	N/mm ²	creep strength for 10 ⁻¹ hours	ε	%	permissible edge expansion
к _к			δ _B	-	coefficient for calculation of the base
κ _L	N/mm ²	creep strength for the calculated usable life at	$\eta_{A,i}$	-	utilization of the axial stability in band i
· ·L		the mean active temperature	η_{M}	-	utilization of the pressure stability of the shell
к _м	N/mm ²	creep strength for the mean-term influence (e.g.	κ	dogroo	angle of the roof to the perpendicular
'`M		for 3 months of snow at 0°C)		•	density material ($\gamma = p \cdot g$)
l _o	mm	length of the upper band of the equivalent cylin-	ρ	•	density of the contents
		der	ρ_{F}	•	density of the contents
Mw		bending moment at wind loading	σ K,L,M	N/mm²	existing stress
n _Z	N/mm	diaphragm tensile load	σ_k	N/mm ²	critical buckling stress
р _В	N/mm ²	pressure at the tank base	$\sigma_{k,i}$	N/mm ²	critical buckling stress at band i
p	N/mm ²	auxiliary value	σω		stress due to the wind loading
p _D	N/mm ²	influences on the roof	**		5
р _{DL, M, K}	N/mm ²	pulsation equivalent stress due to wind loading			
p _{eu} p		critical buckling pressure of the shell			
P _{KM}		auxiliary value			
p _{max}		-	4	N	——————————————————————————————————————
P _S		snow loading on the roof		Ч	
p _{stat}	N/mm²	overpressure at the tank base due to the con-		И–	
p _{stat,i}	N/mm²	tents overpressure at lower edge of the band due to		1	- I I I
		the contents		И	
p _u	N/mm ²	continuously active external pressure (or inter- nal depression)		8	
р _{иК}	N/mm²	short-term active external pressure (or internal depression)		Ę	
p _ü	N/mm ²	continuously active internal pressure		Ĺ	
		short-term active internal pressure		И	
p _{üK}		depression due to wind suction		И	' H I
p _{uS}		•		И	
p _w		auxiliary value	لم م	И	
р ₁		auxiliary value	_	ľ	
թ _σ		auxiliary value		[]-	
qj		impact pressure at partial surface A _i		И	I H I
q _{max}		maximum effective impact pressure at the tank		И	
r	mm	cylindrical radius			
s	mm	minimum wall thickness		Sz	
s _a	mm	final wall thickness of the basic component			- I [] []
s _B	mm	wall thickness of the base		И	I H I
s _D	mm	wall thickness of the roof		И	I H I
s _ö	mm	wall thickness of the lifting lug		И	I H I
s _Z	mm	cylindrical wall thickness		И	
∘∠ S _{ZF}	mm	wall thickness of the lowest band		ľ	I K
	mm	statically required wall thickness		ľ	I I Ŭ I
s _{ZF}		oranoany roquirou wan unorneoo	1	_ جڑلے	····
s _{Zm}	mm	mean cylindrical wall thickness			
o∠m S _{Z,1}	mm	wall thickness of the uppermost band			ا س
s _{Z,i}	mm	wall thickness of band i	Figure ⁻	1 0	flat-base tank with constant wall thickness.

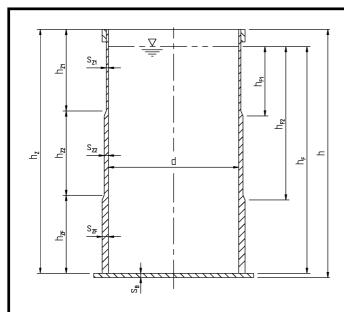


Figure 2. Open flat-base tank with varying wall thickness (three bands).

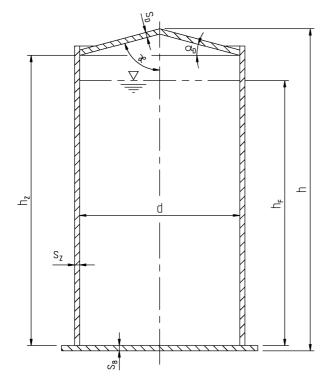


Figure 3. Flat-base tank with conical roof and constant wall thickness.

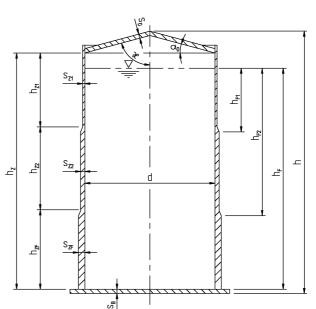


Figure 4. Flat-base tank with conical roof and varying wall thickness (three bands).

3 Loadings

3.1 Permanent loading

Tanks are designed for a calculated usable life of 25 years $(2\times 10^5~hours)$ according to the application.The calculated height of the filling level $h_{\rm F}$ is determined by the present working state.

3.1.1 Total inherent loading GE

$G_{E} = G_{D} + G_{Z} + G_{B} + G_{A}$	Ν	(1)

Inherent loading of the roof G_D

$G_{D} = A_{D} \cdot s_{D} \cdot \rho \cdot g \cdot 10^{-6}$	N	(2)
Inherent loading of the cylinder G_Z		

$G_Z = A_Z \cdot s_Z \cdot \rho \cdot g \cdot 10^{-6}$	Ν	(3)
--	---	-----

Inherent loading of the base G_{B}

Inherent loading of the extensions GA

Ladders, stages, platforms and similar are to be placed and fixed independently of the tank since, otherwise, the free expansion of the tank, e.g. when filling, emptying and with temperature changes, is hampered. These hindrances cause considerable stress points which are difficult to calculate and result in uneconomic constructions. In the event of differences to this, corresponding evidence shall be produced.

3.1.2 Loading of the filling agent G_F

$$G_{\rm F} = V \cdot \rho_{\rm F} \cdot g \cdot 10^3 \qquad \qquad \mathsf{N} \tag{5}$$

3.1.3 Internal and external pressure p_ü, p_u

Higher pressures as indicated in the scope are to be considered in the height fixed by the user.

In the case of the installation of safety fittings such as overcharge safety devices or aerators and deaerators causing higher pressures, only these pressures shall be considered.

3.2 Medium-term active loadings

The time of influence amounts to 3 months.

3.2.1 Snow loading GS

The snow loading according to DIN 1055-5 shall be determined cumulatively over the calculated usable life corresponding to the regional conditions at an active wall temperature of the roof of 0° C.

3.2.2 Summer temperature

The roofs and collecting tanks may heat up considerably in summer. A wall temperature of 50°C is to be considered for components of PE-HD which are exposed to the sun.

3.3 Short-term active loadings

The time of influence for short-term active loadings is determined with $10^{\cdot1}\ \text{hours.}$

Water hammers which may occur when filling shall be avoided by appropriate measures.

3.3.1 Internal and external pressure p_{üK}, p_{uK}

As far as higher pressures cannot occur as a result of the operating method, the minimum pressures indicated under section 1 are to be considered. $p_{\bar{u}K} \ge p_{\bar{u}}$ (see figure 5) results from the definition of $p_{uK} \cdot P_{uK}$ applies by analogy.

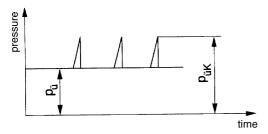


Figure 5. Definition of p_{üK}.

3.3.2 Loading on the roof due to personnel

The roofs must not be walked on if load distributing measures have not been carried out. Corresponding precautions are to be taken at installations and inspection works.

3.3.3 Wind loading

The wind loadings W_i shall be calculated as follows:

$$N_j = \mathbf{c} \cdot \mathbf{q}_j \cdot \mathbf{A}_j$$
 kN

(j = 1, 2, 3, ...) It signifies:

Wj = wind loading of the partial surface A_i

c = correction coefficient of the wind for circular cylinder and roof

As it is not out of question that a single installation becomes a serial installation as a result of additional building measures, the calculation with c = 1.2 according to DIN 1055-4 should be used on principle.

Directly attached construction c = 1.6

- q_j = appropriate impact pressures in kN/m² (DIN 1055-4)
- A_j = appropriate working surface in m² (in the roof area simplified: height of the roof × diameter)

The stress from the wind moment, $M_{\rm w}$ can simplified be calculated as follows:

$$\sigma_{\rm w} = \frac{4 \cdot M_{\rm w} \cdot 10^3}{\pi \cdot d^2 \cdot s_{\rm ZF}} \qquad \qquad \text{N/mm}^2 \qquad (7)$$

M_w can be calculated on a clamped equivalent rod, see figure 6.

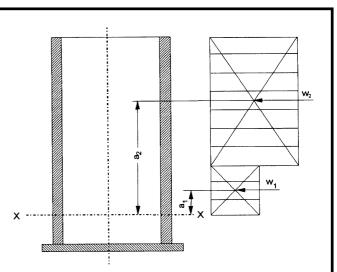


Figure 6. Bending moment, cross-section x....x, caused by wind loading

 $M_{W,x} = W_1 \cdot a_1 \cdot W_2 \cdot a_2 \qquad Nm \qquad (8)$

3.3.4 Pulsation equivalent stress due to wind loading

The pressure load caused by the blowing of the wind against the cylindrical shell is covered with the equivalent stress ${\sf p}_{eu}.$

(6)

$$\delta = 0.46 \cdot \left(1 + 0.1 \cdot \sqrt{C^* \cdot \frac{r}{h_Z} \cdot \sqrt{\frac{r}{s_{Zm}}}} \right) \le 0.6 \tag{10}$$

 $C_{\pm} = 1.0$ for the closed tank

 $C^{2} = 0.6$ for the open tank

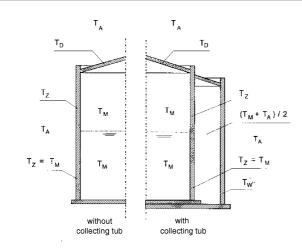
$$s_{Zm} = \frac{\sum (h_i \cdot s_{Z,i})}{h_Z} \qquad mm \qquad (11)$$

3.3.5 Depression due to wind suction

Ventilated tanks are subject to an internal depression as a result of a suction effect.

$$p_{uS} = 0.6 \cdot q_{max} \cdot 10^{-3}$$
 N/mm² (12)

By ventilation through a pipeline leading into the open p_{uS} = $0.48 \cdot 10^{-3} \; N/mm^2$ applies.


3.3.6 Installation loadings

The tank shall be designed for the loading conditions arising at transport and installation. Thereby it shall be calculated with the 1.5fold installation loading. The safety factor is 1.75. The short-time welding factor according to DVS 2205-1 is to be considered.

3.4 Temperature

The effective wall temperature is an important factor in determining the dimensions of a tank. Wetted parts shall always be designed using the contents' temperature T_M . The average of the two neighbouring air temperatures can simply be taken as wall temperature for not wetted parts. The air temperature in the tank is assumed to be the contents' temperature. The long-term mean surrounding air temperature for indoor installation is assumed to be $T_A = 20^{\circ}$ C and for outdoor installation $T_A = 10^{\circ}$ C. Figure 7 indicates the wall thicknesses. The temperature of the roof as a result of heating by the sun's rays should be taken into account for outdoor installation.

For outdoor installation the proof of solidity on cylinders is T_{A} = 30°C.

Outdoor air temperature: $T_A = 10^{\circ}$ C for outdoor installation (mean annual temperature) 20° C for indoor installation 30° C for outdoor installation for stability calculation of the cylinder

without collecting tub	with collecting tub
$T_{\rm D} = (T_{\rm M} + T_{\rm A})/2$	$T_{\rm D} = (T_{\rm M} + T_{\rm A})/2$
$T_Z = (T_M + T_A)/2$	$T_Z = (3 \cdot T_M + T_A)/4$
	$T_{W} = (T_{M} + 3 \cdot T_{A})/4$

Figure 7. Definition of the effective temperatures.

4 Design calculation

The safety factor is defined in Directive DVS 2205-1 for proofs of strength and stability.

4.1 Proof of strength

4.1.1 Effects

Loadings due to connected nozzles and pipelines are not covered by this calculation and are to be considered separately by means of constructive measures (e.g. compensators).

The most unfavourable combination of all effects is to be considered for each component. Two cases shall be examined for the influences of wind and snow:

1. full snow loading

2. 0.7fold snow loading + full wind loading

Short-term active loadings must not be combined.

4.1.2 Overlapping of effects

Three loading categories shall be distinguished according to the time of influence:

- short-term active loadings (K)
 e.g. p_{uk}, p_{ük}, p_{eu}, wind
- medium-term active loadings (M)
 e.g. snow p_S or summer temperatures
- long-term active loadings (L)
 e.g. own weight, filling p_u, p_ü

If the filling, with regard to filling height and temperature, is not constant during the calculated usable life of the tank, a representative equivalent load can be determined for such intermittent loadings by means of the "Miner's Rule". However, the "Miner's Rule" can hardly be applied for the overlapping of effects of the three loading catagories. For this reason a double proof shall always be furnished.

 It has to be proved that the load due to long-term active loadings in overlapping with the effects of a mean-term time of influence but without short-term loadings does not exceed the creep strength.

$$\frac{K_{L}^{\text{vorh}}}{K_{L}^{*}} + \frac{K_{M}^{\text{vorh}}}{K_{M}^{*}} \le 1$$
(13)

with

$$K_{L,M}^{\text{vorh}} = \frac{\sigma_{L,M}^{\text{vorn}} \cdot A_1 \cdot A_2 \cdot S}{f_s} \qquad \text{N/mm}^2 \qquad (14)$$

- $\dot{K_L}$ = Creep strength for the calculated usable life at the mean active temperature
- $\dot{K_M}$ = Creep strength for the mean-term influence (e.g. at snow for 3 months at 0°C for the roof)
- 2. It has to be proved that the load due to short-term loading in overlapping with the remaining effects does not exceed the residual solidity of the material at the end of the calculated usable life. In this case the creep strength is determined with 10^{-1} hours as residual solidity.

$$\frac{\sum \kappa^{\text{vorh}}_{K}}{\kappa_{K}^{*}} \le 1$$
(15)

with K_{K}^{*} = creep strength for 10⁻¹ hours at the temperature belonging to this loading combination.

Note:

For the proof of solidity of the roof it shall be verified whether the consideration of the snow loading leads to unfavourable results since the sum of loadings will be increased, but the creep strength will also increase due to the active wall temperature of 0° C.

The more unfavourable of the two proofs is decisive for the measuring of the components.

4.1.3 Shell

The height of the lower band h_{ZF} shall be at least $1.4 \cdot \sqrt{d \cdot s_{ZF}}$. For tanks with varying wall thickness a wall thickness relation of the neighbouring bands of max. 2 is admissible without further proof.

4.1.3.1 Proof in circumferential direction

The proof shall be furnished for each band that the lower edge can withstand the ring tensile stress resulting from the contents and overpressure. The double proof shall be furnished according to section 4.1.2 with

$$K_{L}^{\text{vorh}} = \frac{(p_{\text{stat},i} + p_{\ddot{u}}) \cdot d \cdot A_{1} \cdot A_{2} \cdot S}{2 \cdot f_{s} \cdot s_{Z,i}} \qquad \text{N/mm}^{2} \qquad (16)$$

and

$$\sum K_{K}^{\text{vorh}} = \frac{(p_{\text{stat},i} + p_{\hat{u}K}) \cdot d \cdot A_{1} \cdot A_{2} \cdot S}{2 \cdot f_{7} \cdot s_{7,i}} \qquad \text{N/mm}^{2} \qquad (17)$$

with

$$p_{stat,i} = \rho_F \cdot g \cdot h_{F,i} \cdot 10^{-6}$$
 N/mm² (18)

at which $h_{\text{F},i}$ signifies the height of the filling capacity over the lower edge of $\,$ band i.

Loadings resulting from medium-term active influences do not occur at this proof ($K_M^{vorh}\ = 0)$.

In the case of cylinders made from sheets the welding factor of

the shell weld f_s is considered. According to the present state of technology, the heating element butt welding shall be prefered.

The residual stresses from the bending of the plates at ambient temperature may be neglected if the values given in table 1 for the permissible edge expansion $\varepsilon = s/d \cdot 100$ [%] are not exceeded. In the case of PVC, the plates are hot-formed.

Table 1. Permissible edge expansions.

Material	Permissible edge expansion $\boldsymbol{\epsilon}$
PE-HD	1,00
PP-H	0,50
PP-B	0,75
PP-R	1,00
PVDF	0,50

4.1.3.2 Proof in longitudinal direction

The highest tensile stresses shall be controlled. The relieving, continuously active compressive stress may hereby be considered to 90 %.

Only the lower band at the transition to the base has to be examined for the proof of the loading in longitudinal direction. Loadings resulting from the bending fault moment arise here which shall be superimposed with the loadings in longitudinal direction due to own weight, pressing and wind.

The double proof shall be furnished according to section 4.1.2 with

$$K_{L}^{vorh} = \left[C \cdot (p_{stat} + p_{\tilde{u}}) \cdot \frac{d}{2} + p_{\tilde{u}} \cdot \frac{d}{4} - \frac{0.9 \cdot (G_{D} + G_{Z})}{\pi \cdot d} \right]$$
$$\cdot \frac{A_{1} \cdot A_{2} \cdot S}{s_{ZF}} \qquad N/mm^{2} \qquad (19)$$
with

with

$$p_{stat} = \rho_F \cdot g \cdot h_F \cdot 10^{-6} \qquad N/mm^2 \qquad (20)$$

 $K_{M}^{vorh} = 0$

and

 $\sum \kappa_{\kappa}^{\text{vort}}$

Factor C for the welded transition of the base-shell connection is the product of the load increase factor $C_1 = 1.2$ and a material specific design factor C_2 as specified in table 2.

Table 2. Material specific design factor C_2 and factor C for thermoplastic materials.

Werkstoff	C ₂	$C = C_1 \cdot C_2$
PE-HD	1.00	1.20
PP-H (type 1)	1.17	1.40
PP-B (type 2)	1.08	1.30
PP-R (type 3)	1.00	1.20
PVC-NI (normal impact strength)	1.25	1.50
PVC-RI (raised impact strength)	1.08	1.30
PVC-HI (high impact strength)	1.00	1.20
PVC-C	1.33	1.60
PVDF	1.17	1.40

A proof of the stress in the weld seam can be omitted if a base fillet weld is carried out with a weld seam thickness of $a \geq 0.7 \cdot s_B$ and a long-term welding factor $f_s \geq 0.6$.

In the case of tanks of one sheet up to a contents of 1000 l with wall thicknesses up to 10 mm, this applies also for long-term welding factors $f_s \geq 0.4.$

The load increase factor $C_1 = 1.2$ supposes that the base will not be produced thicker than the wall thickness of the lower band ($s_B \le s_{ZF}$).

4.1.4 Base

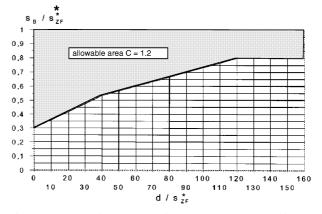
4.1.4.1 Proof for the type of burden filling

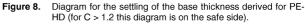
If base and cylinder with base fillet weld are connected (figure 12, section 5.5) the necessary wall thickness may be determined as follows:

$$\delta_{\mathsf{B}} \cdot \mathsf{S}_{\mathsf{7F}} \leq \mathsf{S}_{\mathsf{B}} \leq \mathsf{S}_{\mathsf{7F}}$$

with \mathbf{s}_{ZF} carried-out wall thickness

 $\delta_B^{}$ according to figure 8 and


$$s_{ZF}^{*} = \left[C \cdot (p_{stat} + p_{\ddot{u}}) \cdot \frac{d}{2} + p_{\ddot{u}} \cdot \frac{d}{4} - \frac{0.9 \cdot (G_{D} + G_{Z})}{\pi \cdot d} \right]$$
$$\cdot \frac{A_{1} \cdot A_{2} \cdot S}{K_{1}^{*}} \qquad mm \qquad (22)$$


For other construction forms, a proof of the base as a result of the fixing moment of the cylinder shall be furnished.

4.1.4.2 Proof of non-anchored tanks with overpressure

In the case of tanks which are not anchored on the base (e.g. tanks in collecting tanks), the tank base arches under overpressure leading to a lifting of the whole tank and to bending stresses in the base. When calculating this lifting a residual filling which has to be guaranteed with the filling height $h_{\rm RF}$ will be considered. Short- and long-term active pressures are treated in the same way since it can be postulated that the condition of long-term pressure and residual filling will only prevail for a limited time. For this reason the active pressure is:

 $p_1 = max (p_{\ddot{u}}, p_{\ddot{u}K})$

The diaphragm tensile load in the cylinder lifting the tank is calculated according to:

$$h_{Z} = \frac{p_{1} \cdot \pi \cdot \frac{d^{2}}{4} - 0.9 \cdot (G_{D} + G_{Z})}{\pi \cdot d}$$
 N/mm² (23)

A proof is not required if n_Z is negative.

r

The residual height of the filling level h_{RF} which has to be guaranteed is determined from the two conditions that

- the hoisting of the cylinder is not higher than the limiting value w_{gr}
- the bending load of the base can be absorbed safely:

$$h_{RF} = \frac{p_{max} - p_1}{\rho_F \cdot g \cdot 10^{-6}} mm$$
(24)

with $p_{max} = max (p_w, p_\sigma)$

and

$$p_{w} = \frac{\delta_{w} \cdot n_{Z}^{4} \cdot A_{21}}{\sqrt{w_{qr} \cdot s_{B}^{3} \cdot 0.75 \cdot E_{K}^{T^{\circ}C}}} \qquad N/mm^{2} \qquad (25)$$

$$p_{\sigma} = \frac{2 \cdot \delta_{\sigma} \cdot n_{Z}^{2} \cdot A_{1} \cdot A_{2} \cdot S}{s_{B}^{2} \cdot (K_{K}^{*} + K_{M}^{*})}$$
 N/mm² (26)

with

 $\begin{array}{l} \delta_w &= 1.9, \ \delta_\sigma = 2.25 \ \text{for indoor installation} \\ \delta_w &= 3.8, \ \delta_\sigma = 3.20 \ \text{for outdoor installation} \end{array}$

 w_{gr} = 10 mm is fixed as the dimension for the allowable hoisting course.

Note:

 p_w is calculated with $0.75 \cdot E_K^{\mathsf{T}\circ\mathsf{C}}$ instead of $E_K^{\mathsf{T}\circ\mathsf{C}}$ (see section 5.4) since a higher stress level and thus a lower modulus as in the case of stability problems shall be considered in this deformation calculation.

 p_{σ} is calculated with $(~K_{K}^{\star}+K_{M}^{\star})/2~$ considering a load period of approx. 12 hours.

4.1.4.3 Proof for internal depression

A proof of the base for internal depression can be omitted if the residual filling remains in the tank where the residual height of the filling level is higher than the depression.

4.1.5 Welding joint between base and shell

An explicit proof of the weld load can be omitted if the following conditions are complied with:

 $\begin{array}{ll} - \mbox{ weld thickness } & a \geq 0,7 \cdot s_B \\ - \mbox{ long-term welding factor } & f_s \geq 0,6 \mbox{ (according to DVS 2203-4)} \end{array}$

If one of these conditions is not complied with, a detailed proof of the stresses in the weld has to be furnished (e.g. FE-calculation).

4.1.6 Conical roof

The inclination angle of the roof shall not be less than $\alpha_D^{}$ = 15° $(\kappa$ = 75°) .

4.1.6.1 Inward loadings

The decisive combination of own weight g_D , depressions p_u , p_{uK} , snow loading and depression due to wind p_{uS} shall be examined where p_u , p_{uK} and p_{uS} must not be combined with each other and under the influence of wind, the snow loading can be reduced to 70 %.

The loading is proved by the ring tensile test at the edge of the roof.

The double proof shall be furnished according to section 4.1.2 with

$$K_{L}^{\text{vorh}} = 0.306 \cdot \left(\frac{d}{s_{D}}\right)^{1.543} \cdot p_{D_{L}} \cdot \frac{\sin \kappa}{\sqrt{\cos \kappa}} \cdot \frac{A_{1} \cdot A_{2} \cdot S}{f_{sD}} \quad \text{N/mm}^{2} (27)$$

$$K_{M}^{vorh} = 0.306 \cdot \left(\frac{d}{s_{D}}\right)^{1.543} \cdot p_{D_{M}} \cdot \frac{\sin \kappa}{\sqrt{\cos \kappa}} \cdot \frac{A_{1} \cdot A_{2} \cdot S}{f_{SD}} \text{ N/mm}^{2} \text{ (28)}$$

and

 $\sum \kappa_{\kappa}^{\text{vorh}}$

$$= 0.306 \cdot \left(\frac{d}{s_{D}}\right)^{1.543} \cdot \sum p_{D_{K}} \cdot \frac{\sin \kappa}{\sqrt{\cos \kappa}} \cdot \frac{A_{1} \cdot A_{2} \cdot S}{f_{zD}} N/mm^{2}$$
(29)

The combinations of table 3 shall be examined. For the summer type of burden, an active mean wall temperature determined according to Miner

$$T_{\rm D}^{\star} = \frac{T_{\rm D} + 50}{2} \qquad \qquad ^{\rm o} C \qquad (30)$$

considering a roof temperature of 50°C over 3 months (T_D according to figure 7) is used.

$$g_{\rm D} = \frac{\rho \cdot g \cdot s_{\rm D} \cdot 10^{-6}}{\sin \kappa} + g_{\rm A} \qquad \qquad \text{N/mm}^2 \qquad (31)$$

GA equivalent surface loading for nozzles etc.

The weld factor depends on the quality of the longitudinal weld of the conical roof.

4.1.6.2 Outward loadings

Tensile stresses in ring direction increasing linear from the middle of the roof and changing close to the edge abruptly in a point of compressive strain arise as a result of overpressures p. In order to be on the safe side, the double stress at d/4 is taken for the crest value of the tensile stress.

Table 3. Combination of the type of burden for the calculation of the roof for inward loads.

Place of installation	combination	proof according to (13)				proof according to (15)	
		₽ _{DL}	Temp.	р _{Dм}	temp.	Σ _p _{D_K}	temp.
indoor		g _D + p	T _D	0	-	max $(g_D + p_{uK}, g_D + p_{uS})$	0°C
outdoor	winter	g _D + p	T _D	p _s	0°C	max $(g_D + p_S + p_{uK}, g_D + 0.7 \cdot p_S + p_{uS})$	0°C
outdoor	summer	g _D + p	T _D *	0	-	max ($g_D + p_{uK}, g_D + p_{uS}$)	50°C

Table 4. Combination of the type of burden for the solidity calculation of the roof for outward loads.

Place of installation	combination	proof according to (13)				proof according to (15)	
		P _{DL}	Temp.	р _{Dм}	temp.	$\sum p_{D_{K}}$	temp.
indoor		$p_{\ddot{u}} - 0.9 \cdot g_D$	T _D	0	-	$p_{\ddot{u}K} - 0.9 \cdot g_D$	T _D
outdoor	summer	$p_{\ddot{u}} - 0.9 \cdot g_D$	T _D *	0	-	$p_{\ddot{u}K} - 0.9 \cdot g_D$	50°C

The double proof according to section 4.1.2 shall be furnished with

$$K_{L}^{vorh} = 0.5 \cdot \frac{d}{s_{D}} \cdot p_{D_{L}} \cdot \frac{A_{1} \cdot A_{2} \cdot S}{f_{sD} \cdot \cos \kappa} \qquad \qquad N/mm^{2} \qquad (32)$$

und

$$\sum K_{K}^{\text{vorh}} = 0.5 \cdot \frac{d}{s_{D}} \cdot \sum p_{D_{K}} \cdot \frac{A_{1} \cdot A_{2} \cdot S}{f_{zD} \cdot \cos \kappa} \quad \text{N/mm}^{2}$$
(33)

The combinations of table 4 shall be examined.

4.1.7 Nozzles

The nozzles should generally be attached to the roof. When nozzles are installed in the cylinder, the maximum diameter shall be limited to $d_A = 160$ mm. The distance of nozzle centres to the edges, band limits or welds in the basic component shall be at least $d_A/2 + 100$ mm.

It shall be proved that the loadings of the basic component which are increased as a result of the stress concentration close to the opening can be absorbed.

The loading in the undisturbed basic component is increased by division with the weakening coefficient V_A .

For nozzles in cylinder and conical roof applies

$$v_{A} = \frac{0.75}{1 + \frac{d_{A}}{2 \cdot \sqrt{(d + s_{a}) \cdot s_{a}}}}$$
(34)

with d_A outside diameter of the openin

d diameter of the cylinder

sa final wall thickness of the basic component

A proof shall only be furnished for the biggest nozzles which are situated near the edge of the roof. The existing loadings $K_{L,M,K}^{vom}$ may be calculated according to the following equation.

$$K_{L,M,K}^{vorh} = \frac{p_{D_{L,M,K}}}{2 \cdot \cos \kappa} \cdot \frac{d}{s_{D}} \cdot \frac{A_{1} \cdot A_{2} \cdot S}{V_{A}}$$
(35)

 $p_{D_{L,\,M,\,K}}$ influences according to section 4.1.5.1

For nozzles in the cylinder, the proof for the ring tensile stress shall be furnished considering the height of nozzle according to section 4.1.3.1. The constructive design shall be carried out according to figure 9, section 5.5 (passed through nozzle). The wall thickness shall be at least equivalent to SDR 11 (formerly PN 10).

4.1.8 Anchorages

If anchorages are required, at least 4 anchors shall be arranged ($z \ge 4$).

3 cases shall be distinguished for the proof of the anchorages:

Case 1: short-term overpressure at contents' temperature

$$\frac{\left[\frac{p_{\ddot{u}K} \cdot \pi \cdot d^{2}}{4} - 0.9 \cdot (G_{D} + G_{Z})\right] \cdot \frac{1}{z}}{(b_{Pr} + s_{B}) \cdot s_{B} \cdot \frac{K_{K}^{*}}{A_{1} \cdot S \cdot 2}} \leq 1$$
(36)

Case 2: long-term overpressure at contents' temperature

$$\frac{\left[\frac{p_{\ddot{u}}\cdot\pi\cdot d^{2}}{4}-0.9\cdot(G_{D}+G_{Z})\right]\cdot\frac{1}{z}}{(b_{Pr}+s_{B})\cdot s_{B}\cdot\frac{K_{L}^{*}}{A_{1}\cdot S\cdot 2}}\leq 1$$
(37)

Case 3: wind loading at 20°C (only for outdoor installation)

$$\frac{\left[\frac{4 \cdot M_{w}}{d} \cdot 10^{3} + \frac{p_{\ddot{u}} \cdot \pi \cdot d^{2}}{4} - 0.9 \cdot (G_{D} + G_{Z})\right] \cdot \frac{1}{z}}{(b_{Pr} + s_{B}) \cdot s_{B} \cdot \frac{K_{K}^{*}}{A_{1} \cdot S \cdot 2}} \leq 1$$
(38)

The numerator indicates the claw strength which has to be absorbed and the denominator the claw strength which can be absorbed resulting from the shearing stress in the weld. Half the creep strength is determined as shearing stress.

The required anchor strength (e.g. for the plugs) shall be calculated from the maximum claw strength (maximum of the three numerators) with consideration of the lifting arms.

Figure 10 in section 5.5 shows the construction of an anchorage.

4.1.9 Lifting lugs

One of the possible lifting lug forms is shown in figure 11 (section 5.5). A precondition for the use of these lifting lugs is that only two lifting lugs per tank and a parallel lifter is used.

In order to be able to dispense with a proof of the introduction of loading in the upper band it has to be ensured that the lifting lug is not thicker than three times the wall thickness of the upper band. The diameter of hole (d_L) shall be matched for the diameter of the shackle (d_{Sch}).

It applies
$$s_{Z,1} \leq erf \ s_{\ddot{O}} \leq 3 \cdot s_{Z,1} \tag{39}$$

$$d_{Sch} \le d_{L} \le 1.1 \cdot d_{Sch} \tag{40}$$

It shall be proved that 1.5 times of the loading with a safety factor S_{M} = 1.75 can be borne momentarily at 20°C.

The required wall thickness $(s_{\ddot{O}})$ of the lifting lug results from the proof of the face of a hole.

$$_{\ddot{O}} = \frac{1.5 \cdot \frac{G_{E} - G_{A}}{2} \cdot A_{1} \cdot S_{M}}{d_{Sch} \cdot (2 \cdot \kappa_{K}^{*})} \qquad mm \qquad (41)$$

The maximum of the two following proofs is decisive for the width of the lifting lug (b_{\ddot{O}}).

 $b_{\ddot{O}} = \max(b_{\ddot{O},1}, b_{\ddot{O},2}).$

Proof of the shearing stress of the cross weld when lifting the lying $\ensuremath{\mathsf{tank}}$

$$b_{\ddot{O},1} = \frac{1.5 \cdot \frac{G_E - G_A}{4} \cdot A_1 \cdot S_M}{0.7 \cdot s_{Z,1} \cdot \frac{K_K^*}{2} \cdot f_Z} \qquad mm \qquad (42)$$

Eye bar

s

$$b_{\ddot{O},2} = \frac{1.5 \cdot \left(\frac{G_E - G_A}{2}\right) \cdot A_1 \cdot S_M}{s_{\ddot{O}} \cdot \kappa_K^*} + \frac{7}{3} \cdot d_L mm$$
(43)

4.2 Proof of stability

4.2.1 Superposition of influences

The decisive E-moduli are required for the calculation of the stability. The buckling of shells is a sudden occurence depending essentially on the imperfection i. e., on the size of the prebuckles. The size of the pre-buckles increases with the increasing load period due to the flow properties of the material. However, the elastic resistance during the beating out is mainly determined by the short-term E-modulus at the present temperature. Due to this fact, the critical buckling stress σ_k is calculated with the temperature-dependent moduli $E_k^{\rm ToC}$ which

are indicated in table 6 (section 5.4) for the essential thermoplastics.

The most unfavourable combination of the loadings under consideration of the temperature behaviour of the thermoplastics shall be examined.

4.2.2 Shell

For the shell of the tank, a proof of the sufficient safety against stability due to axial thrust, shell pressure and against the interaction of both shall be furnished. As a result of the delimitation of the nozzle diameter a proof of stability beside the nozzles can be dispensed with

providing that the ovality of the cylinder remains limited in the following form:

$$u = \frac{2 \cdot (d_{max} - d_{min})}{d_{max} + d_{min}} \cdot 100 \le 0.5$$
 % (44)

4.2.2.1 Axial stability

For each band i, the axial compressive strain out of own weight, depressions $p_{u}, \, p_{uK}, \, p_{uS}, \,$ snow and wind loading existing at the lower edge is determined in the most unfavourable combination and secured with the buckling stress $\sigma_{k,i}.$

At outdoor installation

$$\sum_{\sigma_{1}}^{\text{vorh}} = \max \left[\sigma_{G} + \max \left(\sigma_{pu}, \sigma_{puS} \right) + 0.7 \cdot \sigma_{S} + \frac{\sigma_{W}}{1.2}, \sigma_{G} + \sigma_{puK} + \sigma_{S} \right]$$

$$N/mm^{2} \qquad (45)$$

At indoor installation

$$\sum \sigma_{i}^{\text{vorh}} = \sigma_{\text{G}} + \max \left(\sigma_{\text{puK}}, p_{\text{puS}} \right) \qquad \text{N/mm}^{2} \tag{46}$$

The stress due to the wind moment σ_W may be divided by 1.2 since the buckling stress could have been increased by 20 % at global bending.

The buckling stress may, simplified, be calculated according to the following equation:

$$\sigma_{k,i} = \alpha \cdot 0.62 \cdot \mathsf{E}_{\mathsf{K}}^{\mathsf{T}^{\mathsf{C}}\mathsf{C}} \cdot \frac{\mathsf{S}_{\mathsf{Z},i}}{\mathsf{r}} \leq \mathsf{K}_{\mathsf{K}}^{*} \qquad \mathsf{N/mm}^{2} \tag{47}$$

with
$$\alpha = \frac{0,7}{\sqrt{\frac{E_{K}^{20^{\circ}C}}{E_{L}^{20^{\circ}C}}} \cdot \left(1 + \frac{r}{100 \cdot s_{Z,i}}\right)}}$$
 (48)

The following condition for each band i must be complied with:

$$\eta_{A,i} = \frac{S \cdot A_{21} \cdot \sum_{i} \sigma_{i}^{vorh}}{\sigma_{k,i}} \le 1$$
(49)

4.2.2.2 Pressure stability of the shell

The decisive depression arising out of the most unfavourable combination of the depressions $p_u, \, p_{uK}, \, p_{uS} + p_{eu}$ is secured with the critical pressure of the shell p_{kM} .

The following condition must be complied with:

$$\eta_{M} = \frac{S \cdot A_{21} \cdot \sum p^{\text{vorh}}}{p_{kM}} \le 1$$
(50)

The critical pressure of the shell of the non-graduated cylinder shall be calculated according to the equation:

$$p_{kM} = 0.64 \cdot C^* \cdot E_{K}^{T^{\circ}C} \cdot \frac{r}{h_Z} \cdot \left(\frac{s_Z}{r}\right)^{2,5} \quad N/mm^2$$
(51)

with
$$C^* = 1$$
 for tanks with fixed root

with C = 0.6 for open tanks.

The critical pressure of the shell of the graduated tank may be calculated on an equivalent cylinder with three bands according to DIN 18800-4:

$$p_{kM} = 0.64 \cdot \beta \cdot C^* \cdot E_{K}^{T^{\circ}C} \cdot \frac{r}{l_0} \cdot \left(\frac{s_0}{r}\right)^{2.5} \qquad N/mm^2 \qquad (52)$$

with $C^* = 1$

The $\beta\text{-values}$ can be found in the tables 20 a to c of the DIN 18800-4.

4.2.2.3 Interaction

The proof for the interaction between axial and pressure stability of the shell has to be furnished for each band

$$\eta_{A,i}^{1,25} + \eta_{M}^{1,25} \le 1$$
 (53)

At the calculation of $\eta_{A,i}$ for the interaction, the longitudinal stresses due to depression do not have to be considered since their effect is already included in η_M .

4.2.3 Conical roof

The most unfavourable combination of the compressive strains in circumferential direction in the middle of the surface line of the conical roof (d/4)

$$\sigma^{\text{vorh}} = \frac{\sum p^{\text{vorm}}}{4 \cdot \cos \kappa} \cdot \frac{d}{s_{\text{D}}}$$
 N/mm² (54)

is secured with the critical stresses

$$\sigma_{k} = 2.56 \cdot E_{K}^{T^{\circ}C} \cdot \sin \kappa \cdot \sqrt{\cos \kappa} \cdot \left(\frac{s_{D}}{d}\right)^{1.5} \qquad \text{N/mm}^{2} \qquad (55)$$

with

$$\eta = \frac{A_{21} \cdot S \cdot \sum_{k} \sigma^{\text{vorh}}}{\sigma_{k}} \le 1$$
(56)

The combinations of table 5 shall be examined.

Table 5. Combination for the type of burden for the stability calculation of the roof.

Place of installation	combination	Σp ^{vorh}	Temp.
indoor		max ($g_D + p_{uK}, g_D + p_{uS}$)	T _D
outdoor	winter	$\max (g_D + p_s + p_{uK}, g_D + 0.7$ $\cdot p_S + p_{uS})$	0°C
outdoor	summer	max $(g_D + p_{uK}, g_D + p_{uS})$	50°C

5 Annex

5.1 Explanations

This standard has been drawn up by the DVS-UG W 4.3b (Constructive design/apparatus engineering) together with the Board of Experts "Thermoplastic tanks and pipes" (project group "calculation"). Although the preceding edition (March 1974) had found a large application sector, a new edition has become necessary due to the progress in skills, experiences and material examinations as well as the consideration of overlapping regulations.

When revising the preceding edition, it was determined whether the tanks should only be dimensioned regarding their loadings out of internal pressure due to filling agent and height of the filling level (this corresponds to the subject of the edition 1974) or whether additional loadings (for ex. wind, snow loading) should be considered for the dimensioning. The last-mentioned starting point has been chosen for the new edition of this standard. The case of application "Installation and service of tanks inside of buildings" will be treated in supplementary sheet 1.

Supplementary sheet 2 includes the requirements for collecting devices (collecting tanks).

5.2 Standards and guidelines

DIN EN 1778 Draft	Characteristic values for welded thermoplastic construction: definition of the allowable stresses and moduli for the calculation of thermoplastic components
DIN 1055-3	Design loads for buildings, live loads
DIN 1055-4	Design loads for buildings, live loads, wind loadings of buildings which are not susceptible to vibration
DIN 1055-5	Design loads for buildings, live loads, snow loading und ice loading
DIN 4740-1	Ventilation and air conditioning installations; pipes made of unplasticized polyvinylchloride (PVC-U); calculation of the minimum wall thicknesses
DIN 8061/62	Pipes made of unplasticized polyvinylchloride
DIN 8074/75	Pipes made of high-density polyethylene (PE-HD)
DIN 8077/78	Pipes made of polypropylene (PP)
DIN 16925	Extruded sheets made of polyethylene (PE); technical delivery conditions
DIN 16927	Sheets made of polyvinylchloride (rigid PVC); technical delivery conditions
DIN 16961-1 and -2	Thermoplastic pipes and fittings with shaped wall and smooth interior surface of the pipe
DIN 16971	Extruded sheets made of polypropylene (PP); technical delivery conditions
DIN 18800-4	Stability cases; shell bulges
DVS 2201-2	Testing of semifinished products of thermo- plastics; weldability; test methods; requirements
DVS 2205	Calculation of containers and apparatus made from thermoplastics;
-1	-; Characteristic values
-3 -4	–; Welded joints –; Flanged joints
-4 DVS 2206	
	Testing of components and constructions made of thermoplastic materials
DVS 2211	Filler materials of thermoplastics
ISO/DIS 11833-1	Plastics – Unplasticized polyvinylchloride sheets – Types, dimensions and characteristics – Part 1 Sheets of thickness not less than 1 mm
prEn/ISO 14632	Extruded sheets of high-density polyethylene (PE-HD) Requirements and test methods
prEn/ISO 15013	Extruded sheets of polypropylene (PP) Requirements and test methods
prEN/ISO (CEN/TC 249/ SC6-WI 009)	Extruded sheets of polyvenylidene fluorid (PVDF) Requirements and test methods

5.3 Literature

[2]

[3]

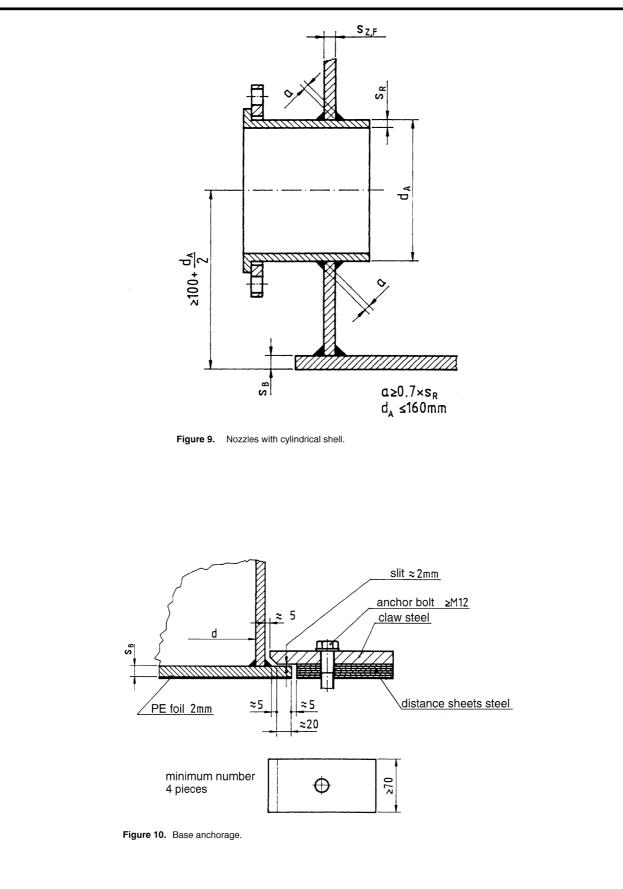
- Timoshenko, S: Theory of Plates and Shells. [1] McGraw Hill Book Comp, New York/London 1959
 - Kempe, B.: Measurements of the deformation of a tank of high-density polyethylene by a change in temperature. Schw. Schn. 42 (1990), H. 4, p. 173.
 - Tuercke, H.: On the stability of tanks made from thermoplastic materials, DIBt-information, copybook 5/1995.

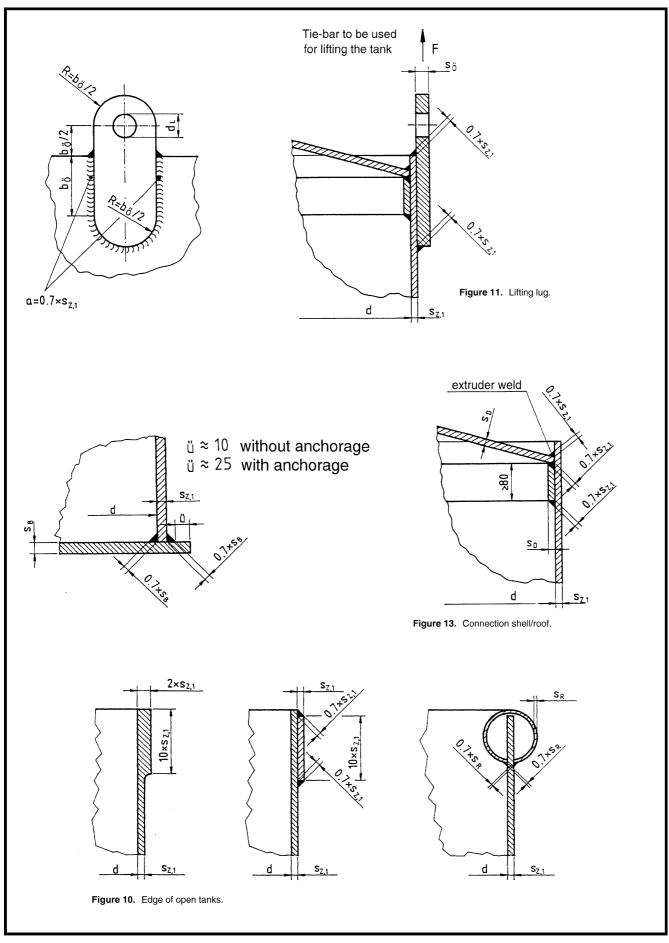
5.4 Temperature and time-dependent elasticity moduli for stability calculations

Table 6. Temperature-dependent short-term E-moduli $E_{\ K}^{T^{o}C}$ in N/mm².

material	$\leq 10^{\circ}C$	20°C	30°C	40°C	50°C	60°C	70°C	80°C
PE-HD	1100	800	550	390	270	190	-	-
PP-H	1400	1200	960	770	620	500	400	320
PP-B	1200	1000	790	630	500	400	320	250
PP-R	1000	800	620	490	380	300	230	180
PVC-NI	3200	3000	2710	2450	2210	2000	-	-
	$\leq 10^{\circ}C$	20°C	40°C	60°C	80°C	100°C	-	-
PVDF	1900	1700	1330	1050	820	650	-	-

Table 7. Time-dependent short-term E-moduli $E_L^{20^\circ C}$ in N/mm².


material	1 year	5 years	10 years	15 years	20 years	25 years
PE-HD	308	269	254	245	239	235
PP-H	464	393	365	350	340	330
PP-B	405	334	307	293	283	275
PP-R	322	298	288	283	279	276
PVC-NI	1800	1695	1652	1627	1609	1600
PVDF	810	763	744	733	725	720


Note: The long-term E-moduli for PE-HD apply for stresses up to 0.5 N/mm², for PP up to 1 N/mm². The stress dependence of the E-moduli for PVC-NI and PVDF is negligible.

5.5 Construction details

This section describes the examples of construction for

- Nozzles in cylindrical shell
- Base anchorage
- Lifting lugs
- Connection shell/base
 Connection shell/roof
- Edge of open tanks

Welded static thermoplastic tanks – Installation inside of buildings

The responsibilities of certain fields of laws (e.g. building laws,

Contents:

2 (Scope Calculation values	S		relating t n into ac		ater, law relating to protection of labour) are to be nt.
3.1 I	Loadings Permanent loadin	•	2 (Calculat	ion	values
	Total inherent loa Loading of the filli	0	а	mm		depth of the weld seam
		nal pressure p _ü , p _u	AB	mm		surface of the base
3.2	Short-term active	loadings	A _D	mm		surface of the roof
		nal pressure p _{üK} , p _{uK}	_			shell surface of the cylinder
	Depression due to		A _Z	mm	-	-
3.2.4 I	Installation loadin	oof due to personnel gs	А ₁	_		reduction factor for the influence of the specific viscosity (see DIN EN 1778)
4 I	Temperature Design Calculatio	n	A ₂	-		reduction factor for the medium at proof of solidity
4.1.1	Proof of strength Shell		A_{2I}	_		reduction factor for the medium at proof of stability
4.1.2 4.1.3	Base Nozzles		bö	mm		width of the lifting lug
	Lifting lugs		~0 C1	_		load increase factor
	Proof of stability		-			material specific design factor
	Shell		C ₂	-		
	Conical roof Annex		C	_		$C_1 \cdot C_2$
	Explanations		d	mm		nominal inside diameter
	Standards and dir	rectives	d _A	mm		nozzle outside diameter
	Literature		dL	mm		diameter of hole in lifting lug
	Temperature and stability calculatio	d time-dependent elasticity moduli for	d _{ma:}	_x mm		maximum diameter of the cylinder
	Construction deta		d _{min}	, mm		minimum diameter of the cylinder
010			d _{Sch}	n mm		diameter of the shackle
1 Sco	pe		Εĸ	c N/m	nm²	elastic modulus at short-term loading and T^\circC
The fol	Usudaan mulaa fan		f _s	-		long-term welding factor
	•	the design and calculation apply to k-shop fabricated, flat-bottom tanks of	f _{sD}	_		welding factor for the roof
	plastic materials, i	· · · · · · · · · · · · · · · · · · ·	fz	_		short-term welding factor
•	ethylene (PE)	F	g	m/s	2	acceleration due to gravity (9,81 m/s ²)
•	propylene (PP)		G _A	Ν		inherent loading of the extensions
	vinyl chloride (PV0	C-U)	GB	N		inherent loading of the base
– Polyv	vinylidene fluoride	(PVDF)	GD	N		inherent loading of the roof
		able for installations of tanks inside of	GE	N		total inherent loading
building	js.			N		loading of the filling agent
,		constant or varying wall thickness may	G _F			0 0 0
	le of welded plat	es or a wound cylinder or an extruded	G _Z	N		inherent cylindrical loading
pipe.			h	mm		height
		nto account short-term and long-term	h _F	mm		height of the filling level
	represent the limit	as the hydrostatic loading. The following	h _{F,i}	mm		height of the filling level of band i
			hZ	mm		cylindrical height
	Overpressure: 0.0005 N/mm² (0.005 bar) Low pressure: 0.0003 N/mm² (0.003 bar)		h _{ZF}	mm		height of the lower band height of band i
The lon effective	•	ssures are only applicable if they can be	h _{Z,i} K⊀K	mm N/m		creep strength for 10 ⁻¹ hours
Limitatio	on of the main din	nensions:	p _{stat}	t N/m	1m²	overpressure at the tank base due to the
Tank dia Ratio: Minimur	ameter: m wall thickness:	$d \le 4 m$ h/d ≤ 6 s = 4 mm	p _{stat}	_{t, i} N/m	1m²	contents overpressure at lower edge of the band due to the contents

This publication has been drawn up by a group of experienced specialists working in an honorary capacity and its consideration as an important source of information is recommended. The user should always check to what extent the contents are applicable to his particular case and whether the version on hand is still valid. No liability can be accepted by the Deutscher Verband für Schweißtechnik e.V., and those participating in the drawing up of the document.

DVS, Technical Committee, Working Group "Joining of Plastics"

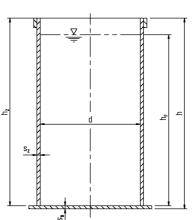
Orders to: DVS-Verlag GmbH, P. O. Box 10 19 65, 40010 Düsseldorf, Germany, Phone: +49(0)211/1591-0, Telefax: +49(0)211/1591-150

Page 2 to DVS 2205-2 Supplement 1

p _u	N/mm²	continuously active external pressure (or internal depression)							
Р _{иК}	N/mm²	short-term active external pressure (or internal depression)							
D ue	N/mm ²	depression depression due to wind suction							
P _{uS}	N/mm ²	depression due to wind suction continuously active internal pressure							
Р _ü Diur	N/mm ²	short-term active internal pressure							
Р _{üK} r	mm	cylindrical radius							
s	mm	minimum wall thickness							
	mm	final wall thickness							
s _a Sa	mm	wall thickness of the base							
s _B	mm	wall thickness of the pase							
s _D		wall thickness of a cylinder with one band due							
s _M	mm	to depression stability							
sö	mm	wall thickness of the lifting lug							
sz	mm	cylindrical wall thickness							
SZF	mm	wall thickness of the lowest band							
SZFC	mm	statically required wall thickness due to longitudinal stress							
s _{ZFR}	mm	statically required wall thickness due to ring tensile stress							
s _{Z, i}	mm	wall thickness of band i							
s _{Z, I}	mm	wall thickness of the uppermost band							
S	-	safety coefficient							
S _M	-	safety coefficient for the calculation of the lifting lugs							
TA	°C	temperature of the outside air							
TD	°C	temperature of the roof							
TM	°C	contents' temperature							
Tw	°C	temperature of the collecting tank wall							
T _Z	°C	temperature of the tank wall							
u	%	ovality							
V	m³	filling volume							
VA	_	weakening coefficient							
α	degree	angle of inclination							
β _E	_	coefficient for the calculation of the roof							
βs	_	coefficient for the calculation of the roof							
δ _B	_	coefficient for the calculation of the base							
δ _F	mm	coefficient for the calculation of the roof							
δ_{S}	mm	coefficient for the calculation of the roof							
ε	%	permissible edge expansion							
ĸ	degree	angle of the roof to the perpendicular							
λ	_	coefficient for the pressure stability of the shell							
ρ	g/cm ³	density material ($\gamma = \rho \cdot q$)							
ρ βe	g/cm ³	density of the contents $(r = p^2 - g)^2$							
	N/mm ²	allowable stress (see DVS 2205-1)							
σ _{zul}									

3 Loadings

3.1 Permanent loadings


Tanks are designed for a calculated usable life of 25 years (2 \times 10⁵ hours) according to the application. The calculated height of the filling level h_F is determined by the present working state.

3.1.1 Total inherent loading G_E

$G_{E} = G_{D} + G_{Z} + G_{B} + G_{A}$	Ν	(1)
Inherent loading of the roof G_D		
$G_D = A_D \cdot s_D \cdot \rho \cdot g \cdot 10^{-6}$	Ν	(2)

$$\begin{array}{ll} \mbox{Inherent loading of the cylinder } G_Z & & \\ G_Z = A_Z \cdot s_Z \cdot \rho \cdot g \cdot 10^{-6} & N & (3) \\ \mbox{Inherent loading of the base } G_B & & \\ G_B = A_B \cdot s_B \cdot \rho \cdot g \cdot 10^{-6} & N & (4) \\ \end{array}$$

Inherent loading of the extensions G_A

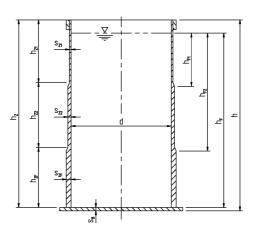
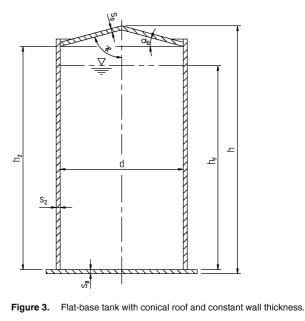



Figure 2. Open flat-base tank with varying wall thickness.

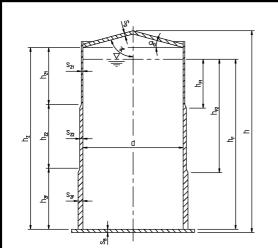


Figure 4. Flat-base tank with conical roof and varying wall thickness.

Ladders, stages, platforms and similar are to be placed and fixed independently of the tank since, otherwise, the free expansion of the tank, e.g. when filling, emptying and with temperature changes, is hampered. These hindrances cause considerable stress points which are difficult to calculate and result in uneconomic constructions. In the event of differences to this, corresponding evidence shall be produced.

3.1.2 Loading of the filling agent G_F

$$G_{\rm F} = V \cdot \rho_{\rm F} \cdot g \cdot 10^3 \qquad \qquad N \tag{5}$$

3.1.3 Internal and external pressure p_ü, p_u

Higher pressures as indicated in the scope are to be considered in the height fixed by the user.

In the case of the installation of safety fittings such as overcharge safety devices or aerators and deaerators causing higher pressures, only these pressures shall be considered.

3.2 Short-term active loadings

The time of influence for short-term active loadings is determined with 10^{-1} hours (e. g. for installation loadings).

Water hammers which may occur when filling shall be avoided by appropriate measures.

3.2.1 Internal and external pressure $p_{\ddot{u}K}$, p_{uK}

As far as higher pressures cannot occur as a result of the operating method, the minimum pressures indicated under section 1 are to be considered. $p_{\ddot{u}K} \ge p_{\ddot{u}}$ (see figure 5) results from the definition of $p_{\ddot{u}K}$. p_{uK} applies by analogy.

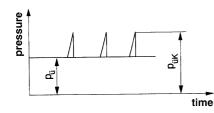


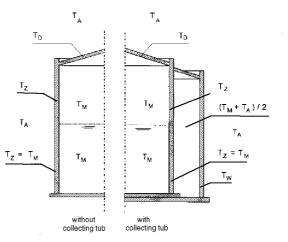
Figure 5. Definition of p_{üK}

3.2.2 Depression due to wind suction

Ventilated tanks are subject to an internal depression as a result of a suction effect (see directive DVS 2205-2, section 3.3.5).

By ventilation through a pipeline leading into the open, $p_{US}=0.48\cdot 10^{-3}\ N/mm^2$ applies.

3.2.3 Loadings on the roof due to personnel


The roofs must not be walked on if load distributing measures have not been carried out. Corresponding precautions are to be taken at installation and inspection works.

3.2.4 Installation loadings

The tank shall be designed for all loading conditions arising at transport and installation. Thereby it shall be calculated with the 1.5fold installation loading. The safety factor is 1.75. The short-term welding factor according to DVS 2205-1 is to be considered.

3.3 Temperature

The effective wall temperature is an important factor in determining the dimensions of a tank. Wetted parts shall always be designed using the mean contents' temperature T_M . The average of the two neighbouring air temperatures can simply be taken as wall temperature for not wetted parts. The air temperature in the tank is assumed to be the contents' temperature. The long-term mean surrounding air temperature for indicates the wall temperatures.

Outdoor air temperature: T_A = 20 °C at indoor installation

without collecting tub	with collecting tub
$T_{\rm D} = (T_{\rm M} + T_{\rm A})/2$	$T_{D} = (T_{M} + T_{A})/2$
$T_Z = (T_M + T_A)/2$	$T_Z = (3 \cdot T_M + T_A)/4$
	$T_{W} = (T_{M} + 3 \cdot T_{A})/4$

Figure 6. Definition of the effective temperatures.

4 Design Calculation

The height of the lower band (h_{ZF}) shall be at least $1.4 \cdot \sqrt{d \cdot s_{ZF}}$. For tanks with varying wall thickness a wall thickness relation of the neighbouring bands of max. 2 is admissible.

4.1 Proof of solidity

4.1.1 Shell

Lower band

The maximum of the two following proofs is decisive for the wall thickness s_{ZF} of the lower band.

 $s_{ZF} = max (s_{ZFR}, s_{ZFC})$

$$s_{ZFR} = \frac{(p_{stat} + p_{\ddot{u}}) \cdot d}{2 \cdot \sigma_{rul}} \qquad mm \qquad (6)$$

For tanks made from sheets, the welding factor of the longitudinal weld has to be considered in equation 6 when determining σ_{zul} (see DVS 2205-1).

$$s_{ZFC} = \frac{C \cdot (p_{stat} + p_{\ddot{u}}) \cdot d}{2 \cdot \sigma_{zul}} \qquad mm \qquad (7)$$

The welding factor is not considered in equation 7 when determining σ_{zul} (see DVS 2205-1).

$$p_{\text{stat}} = \rho_{\text{F}} \cdot \mathbf{g} \cdot \mathbf{h}_{\text{F}} \cdot 10^{-6} \qquad \text{N/mm}^2 \qquad (8)$$

where h_{F} signifies the filling level.

Intermediate bands

The wall thickness s_{Zi} for each band follows from the ring tensile stress resulting from contents and overpressure at its lower end.

$$s_{Z,i} = \frac{(p_{stat,i} + p_{ij}) \cdot d}{2 \cdot \sigma_{zul}} \qquad mm \qquad (9)$$

$$p_{\text{stat,i}} = \rho_{\text{F}} \cdot \mathbf{g} \cdot \mathbf{h}_{\text{F,i}} \cdot 10^{-6} \qquad \text{N/mm}^2 \qquad (10)$$

In the case of cylinders made from sheets the welding factor of the shell weld $\rm f_S$ (see DVS 2205-1) is to be considered. According to the present state of technology, the heated tool butt welding shall be preferred.

The residual stresses from the bending of the plates at ambient temperature may be neglected if the values given in table 1 for the permissible edge expansion ϵ = s/d \cdot 100 [%] are not exceeded. In the case of PVC-U and PVC-C, the plates are hotformed.

Table 1. Permissible edge expansion.

Material	Edge expansion ϵ
PE-HD	1.00
PP-H	0.50
PP-B	0.75
PP-R	1.00
PVDF	0.50

Factor C for the welded transition of the base-shell connection is the product of the load increase factor $C_1 = 1.2$ and a material specific design factor C_2 as specified in table 2.

Table 2.	Material specific design factor C ₂ and factor C for thermo-
	plastic materials.

Material	C ₂	$C = C_1 \cdot C_2$
PE-HD	1.00	1.20
PP-H (type 1)	1.17	1.40
PP-B (type 2)	1.08	1.30
PP-R (type 3)	1.00	1.20
PVC-NI (normal impact strength)	1.25	1.50
PVC-RI (of raised impact strength)	1.08	1.30
PVC-HI (high impact strength)	1.00	1.20
PVC-C	1.33	1.60
PVDF	1.17	1.40

A proof of the stress in the weld seam can be omitted if a base fillet weld is carried out with a weld seam thickness of a \geq 0.7 \cdot s_B and a long-term welding factor f_s \geq 0.6 (see DVS 2205-1).

In the case of tanks of one sheet up to a contents of 1000 l with wall thicknesses up to 10mm, this applies also for long-term welding factors $f_{\rm S} \geq 0.4.$

The load increase factor $C_1 = 1.2$ supposes that the base will not be produced thicker than the wall thickness of the lower band ($s_B \le s_{ZF}$).

4.1.2 Base

If base and cylinder with base fillet weld are connected (figure 11), the necessary wall thickness may be determined as follows:

 $\delta_{B} \cdot s_{ZFC} \leq s_{B} \leq s_{ZF}$

with s_{7F} carried-out wall thickness and δ_B according to figure 7.

For other construction forms, a proof of the base as a result of the fixing moment of the cylinder shall be furnished. For proof of the base of non-anchored tanks with overpressure and proof of possibly required anchorage see section 4.1.4.2 and 4.1.8 in Direction DVS 2205-2.

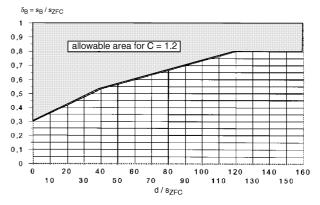


Figure 7. Diagram for the settling of the base thickness derived for PE-HD (for C > 1.2 this diagram is on the safe side).

4.1.3 Nozzles

The nozzles should generally be attached to the roof.

4.1.3.1 Nozzles in the roof

A proof of the loading of the roof resulting from the weakening due to the cutout of the nozzle can be dispensed with if the distance of the edge of the nozzle to the edge of the roof shall be at least 100 mm and the edge of the nozzle is not situated in the area of the longitudinal weld of the roof.

4.1.3.2 4.1.3.2 Nozzles in the shell

The maximum outside diameter of the nozzles is limited to d_{A} = 160 mm. The distance of nozzle centres to the edges, band limits or welds in the basic component shall be at least $d_{\text{A}}/2$ + 100 mm.

It shall be proved that the loadings of the basic component which are increased as a result of the stress concentration close to the opening can be absorbed.

The loading in the undisturbed basic component is increased by division with the weakening coefficient v_{A}

$$V_{A} = \frac{0.75}{1 + \frac{d_{A}}{2 \cdot \sqrt{(d + s_{a}) \cdot s_{a}}}}$$
(11)

with d outside diameter of the opening

d diameter of the cylinder

 $\boldsymbol{s}_a~$ final wall thickness of the basic component.

$$s_a = \frac{s_{ZFR}}{v_A}$$
 bzw. $s_a = \frac{s_{Z,i}}{v_A}$ (12)

If the above-mentioned distance of the nozzle centre to the longitudinal weld of tanks made of plates is observed, the wall thickness s_{ZFR} in equation 12 may be reduced by the welding factor $f_{\rm s}.$

The constructive design shall be carried out according to figure 9, section 5.5 (passed through nozzle). The wall thickness shall be at least equivalent to SDR 11 (formerly PN 10).

4.1.4 Lifting lugs

ŝ

One of the possible lifting lug forms is shown in section 5.5 (figure 10). A precondition for the use of these lifting lugs is that only two lifting lugs per tank and a parallel lifter is used.

The lifting lug must not be thicker than three times the wall thickness of the upper band. The diameter of hole (d_L) shall be maximally 10 % higher than the diameter of the shackle (d_{sch}).

It shall be proved that 1.5 times of the loading with a safety factor $S_{\rm M}$ = 1.75 can be borne momentarily at 20 °C.

The required wall thickness $(s_{\ddot{O}})$ of the lifting lug results from the proof of the face of a hole.

$$s_{\ddot{O}} = \frac{1.5 \cdot \frac{G_{E} - G_{A}}{2} \cdot A_{1} \cdot S_{M}}{d_{Sch} \cdot (2 \cdot K_{K}^{*})} \qquad mm \qquad (13)$$

The maximum of the two proofs is decisive for the width of the lifting lug (b $_{\ddot{O}}).$

 $b_{\ddot{O}} = \max(b_{\ddot{O}1}, b_{\ddot{O}2}).$

-

$$b_{\ddot{O},1} = \frac{1.5 \cdot \frac{G_{E} - G_{A}}{4} \cdot A_{1} \cdot S_{M}}{0.7 \cdot s_{Z,1} \cdot \frac{K_{K}}{2} \cdot f_{Z}} mm$$
(14)

$$b_{\ddot{O},2} = \frac{1.5 \cdot \frac{G_E - G_A}{2} \cdot A_1 \cdot S_M}{s_{\ddot{O}} \cdot K_K^*} + \frac{7}{3} \cdot d_L \quad mm$$
(15)

4.2 Proof of stability

4.2.1 Shell

The required wall thicknesses out of the shell stability resulting from depression p_{μ} are determined by means of an equivalent cylinder with 3 bands (figure 8).

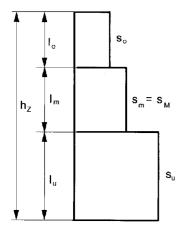


Figure 8. Equivalent cylinder according to DVS 18800, part 4.

The dimensions of the equivalent cylinder are indicated in table 3. The coefficient follows from

Table 3. Dimensions of the equivalent cylinder depending on λ .

Dimensions of	Equations for the calculation				
the equivalent cylinder	$\lambda \le 1/3$	1/3 < λ < 1/2	$\lambda \ge 1/2$		
I _o	$\lambda \cdot h_Z$	$\lambda \cdot h_Z$	-		
s _o	$s_{M} \cdot (1 + 5 \cdot \lambda)/4$	$2\cdot\lambda\cdot s_M$	s _M		
I _m	I _o	$(h_{Z} - I_{o})/2$	-		
s _m	s _M	s _M	s _M		
l _u	$h_{Z} - 2 \cdot I_{o}$	I _m	-		
s _u	$2 \cdot s_m - s_o$	$2 \cdot s_m - s_o$	s _M		

$$\lambda = \frac{s_{M}}{2 \cdot s_{ZFR}}$$
(16)

with

$$\mathbf{s}_{\mathsf{M}} = 0.79 \cdot \left(\mathsf{S} \cdot \mathsf{A}_{2\mathsf{I}} \cdot \frac{\mathsf{h}_{\mathsf{Z}} \cdot \sum p^{\mathsf{vorh}}}{\mathsf{E}_{\mathsf{K}}^{\mathsf{T}^{\mathsf{o}}\mathsf{C}} \cdot \mathsf{d}} \right)^{0.4} \cdot \mathsf{d} \quad \mathsf{mm}$$
(17)

The temperature-dependent and time-dependent $E_{K}^{T^{\circ}C}$ -moduli can be taken from table 5 (section 5.4).

The graduations shall have approx. the same length (\geq 500 mm) with thickness variations of \geq 1 mm.

The graduation should be improved in such a way that the condition $\Sigma s_{z,i} \cdot h_{,Zi} \geq s_o \cdot I_o$ or with $s_m \cdot I_m$ or $s_u \cdot I_u$ is observed and an equal graduation is achieved.

Precondition is that the ovality of the cylinder remains limited in the following form:

$$u = \frac{2 \cdot (d_{max} - d_{min})}{d_{max} + d_{min}} \cdot 100 \le 0.5$$
 (18)

4.2.2 Roof

The inclination angle of the roof shall not be less than α_D = 15° $(\kappa$ = 75°)

At depressions up to 0.003 bar, the proof of stability resulting from own weight and depression is decisive for the calculation of the roof. In the case of not freely ventilated tanks with long-term active depressions p_{u} > 0.003 the proof of solidity may become decisive for the calculation. By approximation, 1000 mm \leq d \leq 4000 mm, α_D = 15°, p_u = 0.003 bar, A_{2l} = 1.4 or A_2 = 1.4 and f_{sD} = 0.8 apply

$$s_{D} = \left(\frac{d}{\beta_{S}} - \delta_{S}\right) \cdot \left(\frac{A_{2I}}{1.4} \cdot \frac{p_{u} \langle bar \rangle}{0.003}\right)^{0.4} \text{ mm}$$
(19a)

with β_{S} and δ_{S} according to table 4.

 Table 4. Coefficient for the calculation of the roof for $\alpha = 15^\circ$, $p_u = 0.003$ bar, $A_{2I} = 1.4$ or $A_{2} = 1.4$ and $f_{sD} = 0.8$.

 Material
 T_M (°C)
 T_W (°C)
 β_S δ_S β_F δ_F

Material	T _M (°C) maximum temperature of the medium	active wall temperature	βs	o _S	βF	o _F (mm)
PE-HD	30	25	200	0.9	261	0.9
	40	30	180	1.0	229	1.1
	50	35	167	1.2	196	1.4
PP-H	30	25	251	0.6	283	0.8
	40	30	237	0.7	278	0.8
	50	35	225	0.7	272	0.8
PP-B	30	25	229	0.7	295	0.7
	40	30	216	0.8	271	0.8
	50	35	205	0.9	251	0.9
PP-R	30	25	205	0.9	324	0.6
	40	30	191	1.0	301	0.7
	50	35	181	1.0	281	0.8
PVC-NI	30	25	373	0.4	433	0.5
	40	30	364	0.4	399	0.5
	50	35	356	0.4	370	0.6
PVDF	30	25	266	0.8	463	0.5
	40	30	258	0.8	451	0.5
	50	35	250	0.9	430	0.6
	60	40	241	0.9	406	0.6
	70	45	235	1.0	401	0.6

For $p_u > 0.003$ bar it has to be verified whether the thickness of the roof is decisive for the dimensioning as a result of the proof of stability according to equation 19b

$$s_{D} = \left(\frac{d}{\beta_{F}} - \delta_{F}\right) \cdot \left(\frac{A_{2}}{1.4} \cdot \frac{p_{u} \langle bar \rangle}{0.003}\right)^{0.648} mm$$
 (19b)

with β_F and δ_F according to table 4. A long-term welding factor f_{sD} 0.6 is taken for granted (see DVS 2205-1).

For d < 1000 mm it has to be calculated with d = 1000 mm!

5 Annex

5.1 Explanations

In the case of installations of the tanks inside of buildings, additional loadings, such as e.g. wind and snow loading, do not have to be considered. For this reason, a tank calculation which is less labour-consuming than the directive DVS 2205-2 is possible.

5.2 Standards and directives

- DIN 1055-3 Design loads for buildings, live loads
- DIN 1055-4 Design loads for buildings, live loads, wind loadings which are not susceptible to vibration
- Design loads for buildings, live loads, snow DIN 1055-5 loading and ice loading
- Draft Characteristic values for welded thermoplastic DIN EN 1778 constructions: definition of the allowable stresses and moduli for the calculation of thermoplastic components
- DIN 4740-1 Ventilation and air conditioning installations; pipes made of unplasticized polyvinyl chloride (PVC-U); calculation of the minimum wall thickness
- DIN 8061/62 Pipes made of unplasticized polyvinyl chloride
- DIN 8074/75 Pipes made of high density polyethylene (PE-HD)
- DIN 8077/78 Pipes made of polypropylene (PP)
- DIN 8079/80 Pipes made of chlorinated polyvinyl chloride (PVC-C)
- DIN 16925 Extruded sheets made of polyethylene (PE); technical delivery conditions
- DIN 16927 Sheets made of rigid polyvinyl chloride (rigid PVC); technical delivery conditions
- DIN 16961-1 Thermoplastic pipes and fittings with shaped wall and -2 and smooth interior surface of the pipe
- DIN 16971 Extruded sheets made of polypropylene (PP); technical delivery conditions
- DIN 18800-4 Stability cases; shell bulges
- ISO/DIS Plastics - Unplasticized polyvinyl chloride sheets -11833-1 Types, dimensions and characteristics - Part 1: Sheets of thickness not less than 1 mm
- prEN/ISO Extruded sheets of high-density polyethylene (PE-14632 HD): Requirements and test methods
- prEN/ISO Extruded sheets of polypropylene 15013 Requirements and test methods
- prEN/ISO Extruded sheets of polyvinylidene fluorid (PVDF): (CEN/TC 249/ Requirements and test methods
- SC6-WI 009)
- Testing of semi-finished products of thermo-DVS 2201-2 plastics; weldability, test methods, requirements DVS 2205 Calculation of containers and apparatus made from thermoplastics; -1 –; Characteristic values -; Welded joints -3
- -4 -; Flanged joints
- Testing of components and constructions made of DVS 2206 thermoplastic material
- DVS 2211 Filler materials of thermoplastics

5.3 Literature

- Timoshenko, S. Theory of Plates and Shells. McGraw Hill [1] Book Comp. New York/London 1959.
- Kempe, B.: Measurements of the deformation of a tank of [2] high-density polyethylene by a change in temperature. Schw. Schn. (1990), H. 4, p. 173/74
- Tuercke, H.: Simplified proof of the pressure stability of the [3] shell at flat-base tanks made of thermoplastics. DIBTinformation, copy-book 6/1995
- [4] Tuercke, H.: On the stability of tanks made from thermoplastic materials, DIBT-information, copy-book 5/ 1995
- Temperature and time-dependent elasticity moduli for stability 5.4 calculation

Table 5.	Temperature-dependent short-term $E_{K}^{T^{\circ}C}$ -moduli E in
	N/mm².

Material	≤10 ^o C	20°C	30°C	40°C	50°C	60°C	70°C	80°C
PE-HD	1100	800	550	390	270	190	-	-
PP-H	1400	1200	960	770	620	500	400	320
PP-B	1200	1000	790	630	500	400	320	250
PP-R	1000	800	620	490	380	300	230	180
PVC-NI	3200	3000	2710	2450	2210	2000	-	-
	≤10°C	20°C	40°C	60°C	80°C	100°C	-	-
PVDF	1900	1700	1330	1050	820	650	-	-

5.5 Construction details

- This section describes the examples of construction for
- Nozzles in cylindrical shell, figure 9
- Lifting lugs, figure 10
- Connection shell/base, figure 11
- Connection shell/roof, figure 12
- Edge of open tanks, figure 13

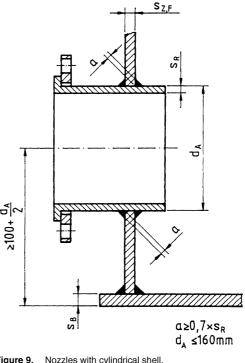
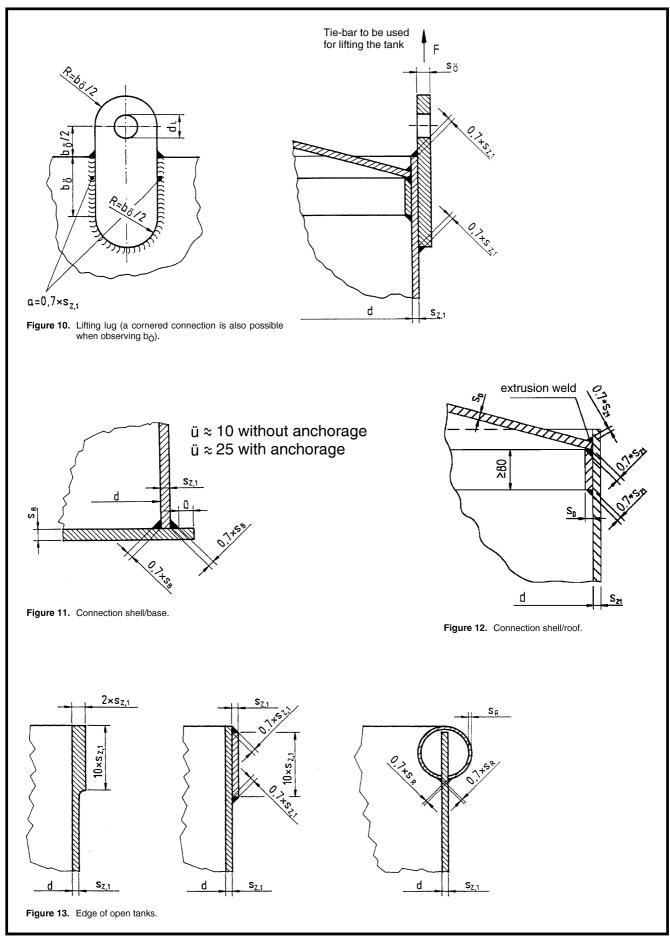



Figure 9. Nozzles with cylindrical shell

Calculation of thermoplastic tanks and apparatus Vertical cylindrical non-pressurised tanks – **Collecting devices**

2 Calculation values

DVS 2205-2 **Supplement 2** (August 1998)

Directive

Contents:

3 Loadings viscosity (see Dirbs 1778) 3.1 Loading of the filling agent Ag reduction factor for the medium at proofs of stability 3.2.1 Wind loading Ag mm² surface of the wind (partial surface) 3.2.1 Wind loading Ag mm² surface of the wind (partial surface) 3.2.1 Wind loading Ag m² viscing surface of the wind (partial surface) 3.3 Installation loading Ag m² viscing surface of the wind (partial surface) 3.4 Temperature Mind the cylinder mind 4.1 Periof of strength c - correction coefficient of the wind (partial surface) 4.1.1 Effects C - Cr - correction coefficient of the wind according to DIN 1055-4 4.1.2 Overlapping of effects C - - correction value for the external pressure charged circular cylinder 4.1.3 Proof of stability d mm minimum diameter of the cylinder 4.1.4 Base - - correction value for the external pressure charged circular cylinder 4.1.5 Annex <th>Conte</th> <th>ints:</th> <th>z Cai</th> <th>culation</th> <th>i values</th>	Conte	ints:	z Cai	culation	i values
2 Calculation values A1 reduction factor for the influence of the specific viscosity (see DIN EN 1778) 3.1 Loading of the filling agent A2 reduction factor for the medium at proofs of solidity 3.1.1 Total inherent loading A2 reduction factor for the medium at proofs of solidity 3.1.2 Total inherent loading A2 reduction factor for the wind (partial surface) 3.2.2 Pulsation equivalent stress due to wind loading A3 reduction factor for the wind (partial surface) 3.3 Installation loadings A2 mm* surface of the wind (partial surface) 3.4 Temperature b0 mm* working surface of the wind (partial surface) 4.1 Proof of strength b0 mw working surface of the wind according to DIN 1055-4 1.2 Overlapping of effects C - correction coefficient of the wind exernal pressure charged circular cylinder 4.1.4 Base C - correction value for the external pressure cylinder 4.1.4 Base C - correction value for the external pressure cylinder 4.1.5 Ancew C - correction value for the external pressure cylinder </th <th>1</th> <th>Scope</th> <th>а</th> <th>mm</th> <th>depth of the weld</th>	1	Scope	а	mm	depth of the weld
3.1LoadsA2reduction factor for the medium at proofs of solidity3.1.1Total inherent loadingA2reduction factor for the medium at proofs of solidity3.2.2Vind loadingA3A33.2.1Wind loadingA3Mm²3.2.2Pulsation loadingsA3m²3.2TemperatureA2m²3.4TemperatureA2m²4Design calculationA3m²4.1EffectsC-4.1.2Overlapping of effectsC-4.1.3ShellC-correction cedificient of the external pressure charged circular cylinder4.1.4BaseC-correction cedificient of the cylinder4.1.4BaseC-correction coefficient of the cylinder4.1.5Wielded joints between base and shellC-correction value for the external pressure charged circular cylinder4.1.4BaseC-correction value for the cylinder4.2.9Proof of stabilitydmmmaximum diameter of the cylinder4.3.1ExplanationsExplanationsExplanations5.5Construction detailsF-loading factor7.4Stability calculationsF-loading factor5.5Construction detailsF-loading factor7.5FF-loading factor7.6F-loadiner factor7.7Toting devices in the lor	2	Calculation values	A ₁		reduction factor for the influence of the specific viscosity (see DIN EN 1778)
3.1.2Loading of the filling agent A_{21} reduction factor for the medium at proofs of stability3.2Wind loading A_{21} reduction factor for the medium at proofs of stability3.2.1Wind loading A_{31} mm²surface of the base3.2.2Pulsion equivalent stress due to wind loading A_{31} mm²surface of the base3.4Temperature A_{21} mm²surface of the cylinder4.1Design calculation B_{01} mm²working surface of the cylinder4.1.1Effects B_{01} mm²working surface of the cylinder4.1.2Overlapping of effects C_{1} -correction coefficient of the wind according to DIN 1055-44.1.5Wilded joints between base and shell C_{2} -correction cule for the external pressure charged circular cylinder4.1.6Anchorage C_{1} -load increase factor4.1.7Lifting lugs C_{1} -correction value for the external pressure charged circular cylinder4.2.1Overlapping of effects d_{1} mmmainter of the cylinder4.3.3Shell d_{22} Axial stability d_{max} mm4.2.2Areasure stability of the shell d_{max} mmmainter of the cylinder4.2.3Areasure stability d_{max} mmmainter of the cylinder5.4Correction E_{20}^{20} N/me²elastic modulus at short-term loading for 20°C5.5Corrective $E_{20}^$	3.1	Loads	A ₂		reduction factor for the medium at proofs of
3.2.1Wind loading 3.2.2Ag Mm²mm²surface of the base working surface of the vind (partial surface) working surface of the vind (partial surface)3.2.2Pulsation equivalent stress due to wind loading A Design calculation A.1.1Effects CAg mm²mm²surface of the sum (partial surface)3.4Temperature Der, mmwidth of the lifting lug C-correction coefficient of the wind according to DIN 1065-44.1.1Effectsc-C1 · C2-4.1.3ShellC-C1 · C2-4.1.4BaseCcorrection coefficient of the wind according to DIN 1065-44.1.3ShellCcorrection coefficient of the wind according to DIN 1065-44.1.4BaseCcorrection coefficient of the wind according to DIN 1065-44.1.2Availa stabilityCcorrection coefficient of the wind according to correction value for the external pressure charged circular cylinder4.2.1Overlapping of effectsdmmnominal inside diameter4.2.2Availa stabilitydmmmm4.3Proof of the lifting securitydmmminimum diameter of the cylinder4.3Proof of the lifting securitydmmminimum diameter of the cylinder4.3Proof of the lifting securitydmmminimum diameter of the cylinder5.4Temperature and time-dependent elasticity modulifs-	3.1.2	Loading of the filling agent	A _{2I}		reduction factor for the medium at proofs of
3.2.2Pulsation equivalent stress due to wind loading 3.4 A_1 M_2 mm² morking surface of the wind (partial surface)3.4Temperature A_2 mm² M_2 mm² M	3.2.1	Wind loading	AB	mm²	
3.3Installation loadings A_2^- mm²shell surface of the cylinder3.4Temperature b_{Pr} mmwidth of the claw4Design calculation b_{Pr} mmwidth of the lifting lug4.1.1Effects c -Creation coefficient of the wind according to4.1.2Overlapping of effects c -C ₁ · C ₂ 4.1.4BaseC-C ₁ · C ₂ 4.1.5Welded joints between base and shellC4.1.6AnchorageC4.1.7Lifting lugsdmmnormatical diameter4.2.1Overlapping of effectsdmmmatinal specific design factor4.2.1Overlapping of effectsdmmmaximum diameter of the cylinder4.3Proof of the lifting securitydmmmaximum diameter of the cylinder4.3Proof of the lifting securitydmmmaximum diameter of the cylinder5.4Tremperature and time-dependent elasticity moduli forfs-long-term welding factor5.4Temperature and time-dependent elasticity moduli forfs-long-term welding factor5.5Construction detailsfs-long-term welding factor6Stability calculationsfs-long-term welding factor7Annexfs-long-term welding factor6Congeter welding tactorfs-long-term welding factor7Conget	3.2.2	Pulsation equivalent stress due to wind loading			
3.4Temperature4Design calculation b_{Pr} mmwidth of the lifting lug4.1Proof of strengthb_0mmwidth of the lifting lug4.1.1Effectsc-Correction coefficient of the wind according to DIN 1055-44.1.3ShellCIoad increase factor4.1.4BaseC1-Ioad increase factor-4.1.5AnchorageC1-Ioad increase factor-4.1.6AnchorageC4.1.7Uting lugs4.1.8AnchorageC4.1.9Overlapping of effects4.2.1Overlapping of effects4.2.2Avial stability4.3Proof of the lifting security5Annex5.3Literature5.4Temperature and time-dependent elasticity moduli for stability calculations5.5Construction details1Scope1Scope1Scope1Scope1<	3.3	Installation loadings			
4Design calculationbox mmwidth of the lifting lug4.1.1Proof of strengthc-correction coefficient of the wind according to DN 1055-44.1.2Overdapping of effectsC-CC-CC-CC-CCC-CCC-CCC-CCC-CCC-<		•			-
1.1Finderscorrection coefficient of the wind according to DIN 1055-44.1.1EffectsC-CDIN 1055-44.1.3ShellCIoad increase factorC-CCC-CCC-CCC-CCC-CC		•			
1.1.2DIN 1056-41.2.2Overlapping of effects4.1.3Base4.1.4Base4.1.5Welded joints between base and shell4.1.6Anchorage4.1.7Lifting lugs4.2.1Overlapping of effects4.2.2Proof of stability4.2.3Pressure stability of the shell4.2.3Pressure stability of the shell4.2.4Proof of the lifting security5Annex6.1Explanations5.2Standards and directives5.3Claretarure6.4Temperature and time-dependent elasticity moduli for stability calculations5.4Temperature and time-dependent elasticity moduli for stability calculations7Following rules for the design and calculation apply to fabricated flat-bottom tanks of thermoplastic materials, in particular7Polypropylene (PP), Polypropylene (PP), Polypropylene (PP), Polypropylene (PP), Polypropylene (PE), Polypropylene (PP), Polypropylene (PE), Polypropylene (PE			-		
4.1.3ShellC-CCC4.1.4BaseC1-load increase factor4.1.5Welded joints between base and shellC1-load increase factor4.1.6AnchorageC-correction value for the external pressure charged circular cylinder4.1.7Lifting lugsC-correction value for the external pressure charged circular cylinder4.2.1Overhapping of effectsdmmmainmun diameter of the cylinder4.2.3Pressure stability of the shelldmmmainmum diameter of the cylinder4.3Proof of the lifting securitydmmmainmum diameter of the cylinder5.4Temperature and time-dependent elasticity moduli for stability calculationsforE5.5Construction detailsECNmm²1ScopeNtotal inherent loading for 20°Cfs1ScopeNtotal inherent loading of tabricated flat-bottom tanks of thermoplastic materials, in patrocide flat-bottom t			0		
1.1.4Base C_1 $-$ load increase factor4.1.5Anchorage C_1 $-$ correction value for the external pressure4.1.6Anchorage C_2 $-$ matterial specific design factor4.1.7Lifting lugs C_2 $-$ correction value for the external pressure4.1.8Proof of stability d mmnominal inside diameter4.2.9Pressure stability of the shell d_L mmdiameter of hole in lifting lug4.2.3Pressure stability of the shell d_m mmmaintum diameter of the cylinder4.3Prosof of the lifting security d_{min} mmmaintum diameter of the cylinder5.4Explanations E_2^{O*C} N/mm ² elastic modulus at short-term loading for 20°C5.4Temperature and time-dependent elasticity moduli for E_2^{O*C} N/mm ² elastic modulus at long-term loading for 20°C5.5Construction details E_2^{O*C} N/mm ² elastic modulus at long-term loading for 20°C5.5Construction details E_2^{O*C} N/mm ² elastic modulus at long-term loading for 20°C5.5Construction details E_2^{O*C} N/mm ² elastic modulus at long-term loading for 20°C6Ninherent loading E_2^{O*C} N/mm ² elastic modulus at long-term loading for 20°C7Collecting devices in the form of vertical, cylindrical, work shop E_2^{O*C} N/mm ² elastic modulus at long-term loading for 20°C7Scope E_2^{O*C} N/mm ² erest modulus at long-term loading for 10°1 <t< td=""><td></td><td></td><td>С</td><td>_</td><td>$C_1 \cdot C_2$</td></t<>			С	_	$C_1 \cdot C_2$
4.1.5Welded joints between base and shell C_2 -material specific design factor4.1.6Anchorage-correction value for the external pressure charged circular cylinder4.1.7Litting lugscorrection value for the external pressure charged circular cylinder4.2.1Overlapping of effectscorrection value for the external pressure charged circular cylinder4.2.2Axial stabilitycorrection value for the external pressure charged circular cylinder4.2.1Overlapping of effects<				_	
4.1.7Litting lugscharged circular cylinder4.2Proof of stabilitydmmnominal inside diameter4.2.1Overlapping of effectsdmmnominal inside diameter4.2.3Pressures stability of the shelldmmmaximum diameter of the cylinder4.3Proof of the lifting securitydmmmaximum diameter of the cylinder4.3Prosof of the lifting securitymmminimum diameter of the shellmm5.4TemperatureSchmmdiameter of the shackle5.4Temperature and time-dependent elasticity moduli for stability calculationsEg0°CN/m²elastic modulus at short-term loading for 30°C5.5Construction detailsfs-long-term welding factorfz-short-term loading for 20°Cfs-fabroated flat-bottom tanks of thermoplastic materials, in particular-Norm²elastic modulus at long-term loading of 20°CGENinherent loading of the baseGENinherent loading for 20°CFolyvinyt chloride (PVC-U),ohytynoytelloride (PVC-U),Polyvinyt chloride (PVC-U),inherent loading-Polyvinyt chloride (PVC-U),hg/th of the filling level<			C ₂	_	material specific design factor
4.1.7Litting lugscharged circular cylinder4.2Proof of stabilitydmmnominal inside diameter4.2.1Overlapping of effectsdmmnominal inside diameter4.2.3Pressures stability of the shelldmmmaximum diameter of the cylinder4.3Proof of the lifting securitydmmmaximum diameter of the cylinder4.3Prosof of the lifting securitymmminimum diameter of the shellmm5.4TemperatureSchmmdiameter of the shackle5.4Temperature and time-dependent elasticity moduli for stability calculationsEg0°CN/m²elastic modulus at short-term loading for 30°C5.5Construction detailsfs-long-term welding factorfz-short-term loading for 20°Cfs-fabroated flat-bottom tanks of thermoplastic materials, in particular-Norm²elastic modulus at long-term loading of 20°CGENinherent loading of the baseGENinherent loading for 20°CFolyvinyt chloride (PVC-U),ohytynoytelloride (PVC-U),Polyvinyt chloride (PVC-U),inherent loading-Polyvinyt chloride (PVC-U),hg/th of the filling level<			Č [‡]		· •
4.2Proof of stabilitydmmnominal inside diameter4.2.1Overlapping of effectsdmmnominal inside diameter4.2.2Axial stabilitydmmdiameter of thole in lifting lug4.2.3Pressure stability of the shelldmmmaximum diameter of the cylinder4.3Proof of the lifting securitydmmmaximum diameter of the cylinder5.4Annexdiameter of the shackle5.2Standards and directivestilterature5.3Literaturetime-dependent elasticity moduli for5.4Temperature and time-dependent elasticity moduli for5.5Construction detailstime5.5Construction detailstime6FN7Scopesaceleration due to gravity (9,81 m/s²)7BN7Fologity (9,81 m/s²)8GN9m/s²9m/s²1Scope7F1Scope7N7F7Nortical shell with constant or varying wall thickness may to perings.7F7Polypropylene (PE),9Polypropylene (PE),9Polypropylene (PE),9Polypropylene (PE),9Polypropylene (PE),9Normal indenesions depend on those of the tanks which they shall surround, see section 5.7The main dimensions depend on those of the tanks which they shall surro			-		· · · · · · · · · · · · · · · · · · ·
4.2.2Axial stability4.2.3Pressure stability of the shell4.3Proof of the lifting security5Annex5.1Explanations5.2Standards and directives5.3Literature5.4Temperature and time-dependent elasticity moduli for stability calculations5.5Construction details5.5Construction details7Broope1Scope7The following rules for the design and calculation apply to fabricated flat-bottom tanks of thermoplastic materials, in particular-Polyvinyl chloride (PVC-U), - Polyvinyl chloride (PVC-U), - Polyvinyl dene fluoride (PVDF)Polyvinglene (PP), - - Polyvinglene fluoride (PVDF)Polyvinglene fluoride (PVDF).The main dimensions depend on those of the tanks which they shall surround, see section 5.The main dimensions depend on those of the tanks which they shall surround, see section 5.The minimum wall thickness is 4 mm.The responsibilities of certain fields of laws (e. g. building laws, shar relating to water, law relating to protection of labour) are to beNormerNummerThe responsibilities of certain fields of laws (e. g. building laws, shar relating to water, law relating to protection of labour) are to beNumerThe responsibilities of certain fields of laws (e. g. building laws, shar relating to water, law relating to protection of labour) are to beNumerThe minimum wall thickness is 4 mm.The minimum wall thickness is 4 mm.Th			d	mm	nominal inside diameter
4.2.2Axial stabilitymmmaximum diameter of the cylinder4.2.3Prosof of the lifting security d_{min} mmmaximum diameter of the cylinder4.3Proof of the lifting security d_{min} mmmaximum diameter of the cylinder5Annex d_{sch} mmdiameter of the shackle5.1Explanations $E_R^{20^\circ C}$ N/mm²elastic modulus at short-term loading for 20°C5.3Literature $E_R^{20^\circ C}$ N/mm²elastic modulus at short-term loading for 20°C5.4Temperature and time-dependent elasticity moduli for stability calculations $E_R^{20^\circ C}$ N/mm²elastic modulus at long-term loading for 20°C5.5Construction details $E_R^{20^\circ C}$ N/mm²elastic modulus at long-term loading for 20°C6FNinherent loading factor f_z $-$ 7Scope G_R Ninherent loading G_R 7Following rules for the design and calculation apply to fabricated flat-bottom tanks of thermoplastic materials, in particular h_R Ninherent loading $-$ Polyvinyl chloride (PVC-U), $-$ Polyvinylidene fluoride (PVDF). h_R , i mmmmheight of the filling level of band i h_Z $-$ Polyvinylidene fluoride (PVDF). h_R , i mmmedium-term active stresses $N/mm²$ The cylindical shell with constant or varying wall thickness may be made of welded plates or a wound cylinder or an extruded pipe. Cylinder and base of the collecting devises must not have shall surround, see section 5. M_R			dı	mm	diameter of hole in lifting lug
4.2.3Presure stability of the shell $d_{\rm min}$ mmminimum diameter of the cylinder4.3Proof of the lifting security $d_{\rm min}$ mmdiameter of the cylinder5.4Annex $d_{\rm Sch}$ mmdiameter of the shackle5.2Standards and directives $d_{\rm min}$ mmdiameter of the shackle5.3Literature $d_{\rm min}$ mmdiameter of the shackle5.4Temperature and time-dependent elasticity moduli for stability calculations $d_{\rm min}$ mmminimum diameter of the cylinder5.5Construction details $f_{\rm s}$ -long-term welding factor5.5Construction details $f_{\rm s}$ -long-term welding factor6gm/s²acceleration due to gravity (9,81 m/s²)1ScopeG _B Ninherent loading of the base7Polyxinyl choride (PVC-U), - Polyyinyl choride (PVC-U), - Polypropylene (PE),Nloading of the filling agent- Polyvinyl choride (PVC-U), - Polypropylene (PE), - Polyvinylidene fluoride (PVDF).hmmheight of the filling level of band iThe explinations depend on those of the collecting devises must not have any openings.NN/mm²creep strength for 10 ⁻¹ hoursMar Hail surround, see section 5.The minimum wall thickness is 4 mm.N/mlength of the upper band of the equivalent cylinderThe responsibilities of certain fields of laws (e. g. building laws, haw relating to water, law relating to protection of labour) are to beN/mbending moment at wind l			_	mm	maximum diameter of the cylinder
 4.3 Proof of the litting security Annex 5.4 Texplanations 5.2 Standards and directives 5.3 Literature 5.4 Temperature and time-dependent elasticity moduli for stability calculations 5.5 Construction details 1 Scope The following rules for the design and calculation apply to collecting devices in the form of vertical, cylindrical, work shop fabricated flat-bottom tanks of thermoplastic materials, in particular Polyvinyl chloride (PVC-U), Polyvinyl chloride (PVC-U), Polyvinyl chloride (PVDF). The cylindrical shell with constant or varying wall thickness may be made of welded plates or a wound cylinder or an extruded pipe. Cylinder and base of the collecting devises must not have shall surround, see section 5. The main dimensions depend on those of the tanks which they shall surround, see section 5. The main dimensions depend on those of the tanks which they shall surround, see section 5. The minimum wall thickness is 4 mm. The responsibilities of certain fields of laws (e. g. building laws, faw relating to protection of labour) are tob 					
3Anima3.1Explanations5.2Standards and directives5.3Literature5.4Temperature and time-dependent elasticity moduli for stability calculations5.5Construction details5.5Construction details6.4Temperature and time-dependent elasticity moduli for stability calculations5.5Construction details6.4Temperature and time-dependent elasticity moduli for stability calculations5.5Construction details7Eccore7Nime7Boog temperature7I Scope7The following rules for the design and calculation apply to collecting devices in the form of vertical, cylindrical, work shop patricular-Polywinyl choirde (PVC-U), - - Polyetrylene (PE), - Polyetrylene (PE		8 ,	dech	mm	diameter of the shackle
5.2Standards and directives5.3Literature5.4Temperature and time-dependent elasticity moduli for stability calculations $E_L^{0^\circ C}$ N/mm²elastic modulus at short-term loading for $30^\circ C$ 5.5Construction details $E_L^{0^\circ C}$ N/mm²elastic modulus at long-term loading for $20^\circ C$ 5.5Construction details F_s -long-term welding factor5.5Construction details F_s -long-term welding factor6GNinherent loading of the baseG7Collecting devices in the form of vertical, cylindrical, work shop fabricated flat-bottom tanks of thermoplastic materials, in particularGNinherent loading-Polyvinyl chloride (PVC-U), -Polypopylene (PP), -Nloading of the filling agent cylindrical loadingG-Polyvinyl chloride (PVC-U), -Polyvinyl dene fluoride (PVDF).mmheight of the tank h mmThe cylindrical shell with constant or varying wall thickness may be made of welded plates or a wound cylinder or an extruded pipe. Cylinder and base of the collecting devises must not have any openings.N/mm²creep strength for the mean-term influence (e. g. filling in the case of leakage)The main dimensions depend on those of the tanks which they shall surround, see section 5.MN/mm²creep strength for the upper band of the equivalent cylinderThe minimum wall thickness is 4 mm.N/mm²N/mm²pulsation equivalent stress due to wind loading Peu N/mm²The responsibilities of certain field			E ^{20°C}	N/mm²	elastic modulus at short-term loading for 20°C
5.4 Temperature and time-dependent elasticity moduli for stability calculations 5.5 Construction details 5.5 Construction details 1 Scope The following rules for the design and calculation apply to collecting devices in the form of vertical, cylindrical, work shop fabricated flat-bottom tanks of thermoplastic materials, in particular - Polyvinyl chloride (PVC-U), - Polypropylene (PP), - Polyvinyl idene fluoride (PVDF). The cylindrical shell with constant or varying wall thickness may be made of welded plates or a wound cylinder or an extruded pipe. Cylinder and base of the collecting devises must not have any openings. The main dimensions depend on those of the tanks which they shall surround, see section 5. The minimum wall thickness is 4 mm. The responsibilities of certain fields of laws (e. g. building laws, law relating to water, law relating to protection of labour) are to be					
5.5 Construction details I_z - iong-term welding factor f_z - short-term welding factor f_z - short-term welding factor I_z - short-t		Temperature and time-dependent elasticity moduli for	-	N/mm²	elastic modulus at long-term loading for 20°C
1Scopeshort-term welding factor1Scope g_g m/s^2 acceleration due to gravity (9,81 m/s²)The following rules for the design and calculation apply to collecting devices in the form of vertical, cylindrical, work shop fabricated flat-bottom tanks of thermoplastic materials, in particularNinherent loading GF-Polyvinyl chloride (PVC-U), - Polyethylene (PE), - Polyethylene fluoride (PVDF).Nloading of the filling level h HF, imm-Polyvinylidene fluoride (PVDF).hhmmheight of the filling level of band i hZ-Polyvinylidene fluoride (PVDF).hZmmweight of the lower band KMThe cylindrical shell with constant or varying wall thickness may be made of welded plates or a wound cylinder or an extruded pipe. Cylinder and base of the collecting devises must not have shall surround, see section 5.N/mm2creep strength for the mean-term influence (e. g. filling in the case of leakage)The minimum wall thickness is 4 mm.MN/mbending moment at wind loading peu N/mm2The responsibilities of certain fields of laws (e. g. building laws, law relating to water, law relating to protection of labour) are to beN/mm2recep start and usel of the shell	5.5	•		-	
1ScopeThe following rules for the design and calculation apply to collecting devices in the form of vertical, cylindrical, work shop fabricated flat-bottom tanks of thermoplastic materials, in particularGNinherent loading of the base-Polyvinyl chloride (PVC-U), - Polyethylene (PE), - Polyethylene fluoride (PVDF).MNinherent cylindrical loading h-Polyvinylidene fluoride (PVDF).Nheight of the filling level of band i hzrh-Polyvinylidene fluoride (PVDF).Nheight of the lower band-Polyvinylidene fluoride (PVDF).N/mm2recep strength for 10 ⁻¹ hoursK MN/mm2creep strength for the mean-term influence (e. g. filling in the case of leakage)The main dimensions depend on those of the tanks which they shall surround, see section 5.N/mThe responsibilities of certain fields of laws (e. g. building laws, law relating to water, law relating to protection of labour) are to beM	0.0		f _z	-	5
The following rules for the design and calculation apply to collecting devices in the form of vertical, cylindrical, work shop fabricated flat-bottom tanks of thermoplastic materials, in particular $\begin{array}{c} - \ \mbox{Polyvinyl chloride (PVC-U),} \\ - \ \mbox{Polyvinyl chloride (PVC-U),} \\ - \ \mbox{Polyvinyl chloride (PVDF).} \\ - \ \mbox{Polyvinyl idene fluoride (PVDF).} \\ - \ Polyvin$				m/s²	
The following rules for the design and calculation apply to collecting devices in the form of vertical, cylindrical, work shop fabricated flat-bottom tanks of thermoplastic materials, in particular $\begin{array}{c} - \ \mbox{Polyvinyl} \ \mbox{collecting} \ \mbox{devices} \ \mbox{inherent cylindrical loading} \ \mbox{inherent cylindrical loading} \ \mbox{height of the tank} \ \mbox{height of the filling level} \ \mbox{height of the lower band} \ \mbox{height of the lower band} \ \mbox{height of the lower band} \ \mbox{height of the lower sesses} \ \mbox{Mmm} \ \mbox{Mmm} \ \mbox{height of the filling level} \ \mbox{height of the filling level} \ \mbox{height of the lower band} \ \mbox{height of the lower band} \ \mbox{Mmm} \ \mbox{Mmm} \ \mbox{Km} \ \mbox{Mmm} \ \mbox{Km} \ \mbox{Mmm} \ \mbox{height of the lower band} \ \mbox{height of the equivalent} \ \mbox{Km} \ \mbox{Mm} \ \mbox{Mmm} \ \mbox{mm} \ \mbox{height of the equivalent} \ \mbox{height of the equivalent} \ \mbox{height of the equivalent} \ \mb$	1 Sc	ope	GB	N	inherent loading of the base
collecting devices in the form of vertical, cylindrical, work shop fabricated flat-bottom tanks of thermoplastic materials, in particular - Polyvinyl chloride (PVC-U), - Polypropylene (PP), - Polyethylene (PE), - Polyvinylidene fluoride (PVDF). The cylindrical shell with constant or varying wall thickness may be made of welded plates or a wound cylinder or an extruded pipe. Cylinder and base of the collecting devises must not have any openings. The main dimensions depend on those of the tanks which they shall surround, see section 5. The minimum wall thickness is 4 mm. The responsibilities of certain fields of laws (e. g. building laws, law relating to water, law relating to protection of labour) are to be				N	total inherent loading
fabricated flat-bottom tanks of thermoplastic materials, in particular $\begin{array}{cccccccccccccccccccccccccccccccccccc$			G _F		loading of the filling agent
particularnmmheight of the tank-Polyvinyl chloride (PVC-U),hhhhhheight of the filling level-Polypropylene (PP),-Polyethylene (PE),hh<		•	GZ	N	inherent cylindrical loading
- Polyvinyl chloride (PVC-U), - Polypropylene (PP), - Polyvinylidene fluoride (PVDF).h - Polyvinylidene fluoride (PVDF).h - Polyvinylidene fluoride (PVDF).The cylindrical shell with constant or varying wall thickness may be made of welded plates or a wound cylinder or an extruded pipe. Cylinder and base of the collecting devises must not have any openings.h - R - N/mm2mmheight of the filling level height of the filling level of band i h - Cylindrical heightThe main dimensions depend on those of the tanks which they shall surround, see section 5.N/mm2creep strength for 10 ⁻¹ hoursThe minimum wall thickness is 4 mm.M wN/mlength of the upper band of the equivalent cylinderThe responsibilities of certain fields of laws (e. g. building laws, law relating to water, law relating to protection of labour) are to beM wN/mm2creep strength for the upper band of the equivalent cylinderM WN/mm2creep strength for the upper band of the equivalent cylinderN/mm2creep strength for the upper band of the equivalent cylinderM WN/mbending moment at wind loading PeuN/mm2pulsation equivalent stress due to wind loading PkM		· · · · · · · · · · · · · · · · · · ·	h	mm	height of the tank
- Polypropylene (PP), - Polyptylene (PE), - Polyvinylidene fluoride (PVDF). The cylindrical shell with constant or varying wall thickness may be made of welded plates or a wound cylinder or an extruded pipe. Cylinder and base of the collecting devises must not have any openings. The main dimensions depend on those of the tanks which they shall surround, see section 5. The minimum wall thickness is 4 mm. The responsibilities of certain fields of laws (e. g. building laws, law relating to water, law relating to protection of labour) are to be	•		h _F	mm	height of the filling level
- Polyethylene (PE), - Polyvinylidene fluoride (PVDF). The cylindrical shell with constant or varying wall thickness may be made of welded plates or a wound cylinder or an extruded pipe. Cylinder and base of the collecting devises must not have any openings. The main dimensions depend on those of the tanks which they shall surround, see section 5. The minimum wall thickness is 4 mm. The responsibilities of certain fields of laws (e. g. building laws, law relating to water, law relating to protection of labour) are to be	-	•	h _{F, i}	mm	height of the filling level of band i
- Polyvinylidene fluoride (PVDF). The cylindrical shell with constant or varying wall thickness may be made of welded plates or a wound cylinder or an extruded pipe. Cylinder and base of the collecting devises must not have any openings. The main dimensions depend on those of the tanks which they shall surround, see section 5. The minimum wall thickness is 4 mm. The responsibilities of certain fields of laws (e. g. building laws, law relating to water, law relating to protection of labour) are to be	-		h _Z	mm	cylindrical height
The cylindrical shell with constant or varying wall thickness may be made of welded plates or a wound cylinder or an extruded pipe. Cylinder and base of the collecting devises must not have any openings. The main dimensions depend on those of the tanks which they shall surround, see section 5. The minimum wall thickness is 4 mm. The responsibilities of certain fields of laws (e. g. building laws, law relating to water, law relating to protection of labour) are to be			h _{ZF}	mm	height of the lower band
 be made of welded plates or a wound cylinder or an extruded pipe. Cylinder and base of the collecting devises must not have any openings. The main dimensions depend on those of the tanks which they shall surround, see section 5. The minimum wall thickness is 4 mm. The responsibilities of certain fields of laws (e. g. building laws, law relating to water, law relating to protection of labour) are to be M/mm² creep strength for 10⁻¹ hours N/mm² creep strength for the mean-term influence (e. g. filling in the case of leakage) N/mm² bending moment at wind loading N/mm² pulsation equivalent stress due to wind loading N/mm² critical buckling pressure of the shell 			K_{M}^{vorh}		
pipe. Cylinder and base of the collecting devises must not have any openings. K_M^* N/mm²creep strength for the mean-term influence (e. g. filling in the case of leakage)The main dimensions depend on those of the tanks which they shall surround, see section 5. I_0 mmlength of the upper band of the equivalent cylinderThe minimum wall thickness is 4 mm. M_W N/mbending moment at wind loading peuThe responsibilities of certain fields of laws (e. g. building laws, law relating to water, law relating to protection of labour) are to be M_W N/mm²			К _к	N/mm ²	creep strength for 10 ⁻¹ hours
The main dimensions depend on those of the tanks which they shall surround, see section 5.Iommlength of the upper band of the equivalent cylinderThe minimum wall thickness is 4 mm.MwN/mbending moment at wind loading peuN/mm²pulsation equivalent stress due to wind loading N/mm²The responsibilities of certain fields of laws (e. g. building laws, law relating to water, law relating to protection of labour) are to beN/mm²pulsation equivalent stress due to wind loading N/mm²		,		N/mm²	
The minimum wall thickness is 4 mm. M_w N/mbending moment at wind loadingThe responsibilities of certain fields of laws (e. g. building laws, law relating to water, law relating to protection of labour) are to be M_w N/mm²pulsation equivalent stress due to wind loading P_{eu} N/mm²pulsation equivalent stress due to wind loading			Ι _ο	mm	length of the upper band of the equivalent
The responsibilities of certain fields of laws (e. g. building laws, law relating to water, law relating to protection of labour) are to be P_{kM} N/mm ² pulsation equivalent stress due to wind loading N/mm ² critical buckling pressure of the shell	The m	inimum wall thickness is 4 mm	Mw	N/m	-
The responsibilities of certain fields of laws (e. g. building laws, P_{kM} N/mm ² critical buckling pressure of the shell law relating to water, law relating to protection of labour) are to be					
taken into account.	law re				

This publication has been drawn up by a group of experienced specialists working in an honorary capacity and its consideration as an important source of information is recommended. The user should always check to what extent the contents are applicable to his particular case and whether the version on hand is still valid. No liability can be accepted by the Deutscher Verband für Schweißtechnik e.V., and those participating in the drawing up of the document.

DVS, Technical Committee, Working Group "Joining of Plastics"

Orders to: DVS-Verlag GmbH, P. O. Box 10 19 65, 40010 Düsseldorf, Germany, Phone: +49(0)211/1591-0, Telefax: +49(0)211/1591-150

Page 2 to DVS 2205-2 Supplement 2

p _{stat}	N/mm ²	overpressure at the tank base due to the
		contents
p _{stat} , i	N/mm ²	overpressure at lower edge of the band due to the contents
q _i	kN/m²	impact pressure at partial surface A _i
q _{max}	kN/m²	maximum effective impact pressure at the
		collecting device
r	mm	cylindrical radius
s _B	mm	wall thickness of the base
sö	mm	wall thickness of the lifting lug
sz	mm	cylindrical wall thickness
SZF	mm	wall thickness of the lowest band
s _{ZF}	mm	statically required wall thickness
s _{Zm}	mm	mean cylindrical wall thickness
s _{Z, 1}	mm	wall thickness of the uppermost band
s _{Z, i}	mm	wall thickness of band i
s _o	mm	wall thickness of the upper band of the
•		equivalent cylinder
S	-	safety coefficient
SM	-	safety coefficient at installation
т _м	°C	contents' temperature
Τw	°C	temperature of the collecting tank wall
u	%	allowable ovality
V	m ³	filling volume
Wi	kN	wind loading
z	-	number of anchors
α	-	auxiliary value
β	_	coefficient
δ	_	coefficient
δ _B	_	coefficient for calculation of the base
ε	%	permissible edge expansion
η _{Α, i}	_	utilization of the axial stability in band i
η _M	_	utilization of the pressure stability of the shell
ρ	g/cm ³	density material ($\gamma = \rho \cdot g$)
ρ _E	g/cm ³	density of the contents
σ_k	- N/mm²	critical buckling stress
σ _{k.i}		critical buckling stress at band i
σ		stress due to the wind loading

 σ_W N/mm² stress due to the wind loading

Figure 1. Collecting device for flat-base tank.

3 Loadings

Collecting devices are designed for the same calculated usable life as the appurtenant tank, the type of loading, filling due to leakage, being assessed for three months.

The following loadings are to be considered in the proof of steadiness:

3.1 Loads

3.1.1 Total inherent loading GE

Inherent loading of the cylinder G_Z

$$G_Z = A_Z \cdot s_Z \cdot \rho \cdot g \cdot 10^{-6} \qquad N \qquad (2)$$

Inherent loading of the base G_B

$$G_{\rm B} = A_{\rm B} \cdot s_{\rm B} \cdot \rho \cdot g \cdot 10^{-6} \qquad \qquad \mathsf{N} \tag{3}$$

Extensions

Ladders, stages, platforms and similar are to be placed and fixed independently of the collecting device since, otherwise, the free expansion of the collecting device, e.g. when filling due to leakage and with temperature changes, is hampered. These hindrances cause considerable stress points which are difficult to calculate and result in uneconomic constructions. In the event of differences to this, corresponding evidence shall be produced.

3.1.2 Loading of the filling agent G_F

$$G_{\rm F} = V \cdot \rho_{\rm F} \cdot g \cdot 10^3 \qquad \qquad \mathsf{N} \tag{4}$$

3.2 Wind

3.2.1 Wind loading

The wind loadings $\ensuremath{\mathsf{W}}_i$ shall be calculated as follows:

$W_j = c \cdot q_j \cdot A_j$	kN	(5)
(j = 1,2,3,)		

It signifies:

 W_i = wind loading of the partial surface A_i

= correction coefficient of the wind for circular cylinder С As it is not out of question that a single installation becomes a serial installation as a result of additional building measures, the calculation with c = 1.2 according to DIN 1055-4 should be used on principle.

Extensions c = 1.6

- qj = appropriate impact pressures in kN/m² (DIN 1055-4)
- Aj = appropriate working surface in m²

The stress from the wind moment M_w can simplified be calculated as follows:

$$\sigma_{\rm w} = \frac{4 \cdot M_{\rm w} \cdot 10^3}{\pi \cdot d^2 \cdot s_{\rm ZF}} \qquad \qquad \text{N/mm}^2 \qquad (6)$$

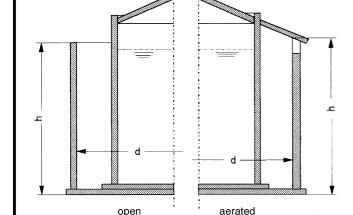
M_w can be calculated on a clamped equivalent rod, see figure 2.

3.2.2 Pulsation equivalent stress due to wind loading

The pressure load caused by the blowing of the wind against the cylindrical shell is covered with the equivalent stress $\mathsf{p}_{eu}.$

$$M_{W,x} = W_1 \cdot a_1 + W_2 \cdot a_2 \qquad N/mm^2 \qquad (7)$$

$$p_{eu} = \delta \cdot q_{max} \cdot 10^{-3} \qquad \text{N/mm}^2 \qquad (8)$$


It signifies:

. .

$$\delta = 0.46 \cdot \left(1 + 0.1 \cdot \sqrt{C^* \cdot \frac{r}{h_Z} \cdot \sqrt{s_{Zm}}} \right) \le 0.6 \tag{9}$$

with $C^* = 0.6$ for open tanks and

$$s_{Zm} = \frac{\sum (h_i \cdot s_{Z,i})}{h_Z} \qquad mm \qquad (10)$$

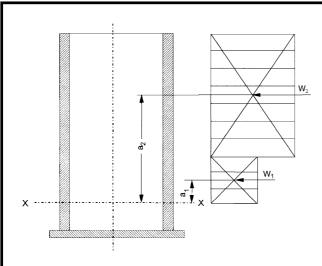


Figure 2. Bending moment, cross-section x x, caused by wind loading.

3.3 Installation loadings

The collecting device shall be designed for all loading conditions arising at transport and installation. Thereby it shall be calculated with the 1.5fold installation loading. The safety factor is 1.75. The short-term welding factor according to DVS 2205-1 is to be considered.

3.4 Temperature

The effective wall temperature is an important factor in determining the dimensions of the building components. Wetted parts shall always be designed using the contents' temperature $T_M \cdot T_W = 30\ ^\circ C$ is to be taken as effective wall temperature for the proofs of stability required for outdoor installations. This standard temperature covers the short-term heating-ups in summer.

4 Design calculation

The safety factor is defined in Directive DVS 2205-1 for proof of strength and stability.

4.1 Proof of strength

4.1.1 Effects

The most unfavourable combination of all effects is to be considered for each component.

Short-term active loadings must not be combined. Only 90 % of the relieving share of the own weight are considered.

4.1.2 Overlapping of effects

Three loading categories shall be distinguished according to the time of influence:

- short-term active loadings (K)
 e. g. wind q, p_{eu}
- medium-term active loadings (M)
 e. g. filling in the case of leakage
- long-term active loadings (L)
- e. g. own weight

The time of influence of short-term active loadings is determined with 10⁻¹ hours and of long-term active loadings with 3 months.

4.1.3 Shell

The height of the lower band h_{ZF} shall be at least $1,4 \cdot \sqrt{d \cdot s_{ZF}}$. For tanks with varying wall thickness a wall thickness relation of the neighbouring bands of max. 2 is admissible without further proof.

4.1.3.1 Proof in circumferential direction

The proof shall be furnished for each band i that the lower edge can withstand the ring tensile stress resulting from the contents:

$$\frac{K_{M}^{\text{vorh}}}{K_{M}^{\star}} \le 1 \tag{11}$$

with

$$K_{M}^{vorh} = \frac{p_{stat,i} \cdot d \cdot A_{1} \cdot A_{2} \cdot S}{2 \cdot f_{s} \cdot s_{Z,i}} \qquad N/mm^{2} \qquad (12)$$

and

$$p_{\text{stat,i}} = \rho_{\text{F}} \cdot g \cdot h_{\text{F,i}} \cdot 10^{-6} \qquad \text{N/mm}^2 \qquad (13)$$

at which $h_{\text{F},\ i}$ signifies the height of the filling capacity over the lower edge of the band i.

In the case of cylinders made from sheets the welding factor of the shell weld $\rm f_S$ is considered. According to the present state of technology, the heated tool butt welding shall be preferred.

The residual stresses from the bending of the plates at ambient temperature may be neglected if the values given in table 1 for the permissible edge expansion $\varepsilon = s_Z/d \cdot 100$ [%] are not exceeded. In the case of PVC-U, the plates are hot-formed.

Table 1. Permissible edge expansions.

Material	Edge expansion $\epsilon \%$
PE-HD	1.00
PP-H	0.50
PP-B	0.75
PP-R	1.00
PVDF	0.50

4.1.3.2 Proof in longitudinal direction

Only the lower band at the transition to the base has to be examined for the proof of the loading in longitudinal direction. Loadings arise here which result from the bending moment, from own weight and wind.

Longitudinal stresses due to own weight may be neglected. A proof of the short-term tensile load due to wind must not be furnished.

The proof shall be furnished with

$$K_{M}^{vorh} = \begin{bmatrix} C \cdot p_{stat} \cdot \frac{d}{2} \end{bmatrix} \cdot \frac{A_{1} \cdot A_{2} \cdot S}{s_{ZF}} \qquad N/mm^{2}$$
(14)

with

$$p_{\text{stat}} = \rho_{\text{F}} \cdot g \cdot h_{\text{F}} \cdot 10^{-6} \qquad \text{N/mm}^2 \qquad (15)$$

Factor C for the welded transition of the base-shell connection is the product of the load increase factor C_1 = 1.2 and a material specific design factor C_2 as specified in table 2.

Table 2. Material specific design factor C₂ and factor C for thermoplastic materials.

Material	C ₂	$\mathbf{C} = \mathbf{C}_1 \cdot \mathbf{C}_2$
PE-HD	1.00	1.20
PP-H (type 1)	1.17	1.40
PP-B (type 2)	1.08	1.30
PP-R (type 3)	1.00	1.20
PVC-NI (normal impact strength)	1.25	1.50
PVC-RI (raised impact strength)	1.08	1.30
PVC-HI (high impact strength)	1.00	1.20
PVC-C	1.33	1.60
PVDF	1.17	1.40

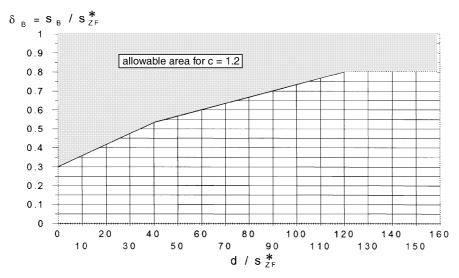


Figure 3. Diagram for the settling of the base thickness derived for PE-HD (for C > 1,2 this diagram is on the safe side).

A proof of stress in the weld can be omitted if the conditions according section 4.1.5 have been complied with.

The load increase factor C_1 = 1.2 supposes that the base will not be produced thicker than the wall thickness of the lower band $(s_B \leq s_{ZF}).$

4.1.4 Base

If base and cylinder with base fillet weld are connected (figure 7), the necessary wall thickness may be determined as follows:

$$\tilde{s}_{B} \cdot \tilde{s}_{ZF} \leq s_{B} \leq s_{ZF} \quad mm$$
 (16)

with s_{ZF} carried-out wall tickness, δ_B according to figure 3 and

$$s_{ZF}^{*} = \frac{C \cdot p_{stat} \cdot d \cdot A_{1} \cdot A_{2} \cdot S}{2 \cdot K_{M}^{*}} \quad mm$$
(17)

For other construction forms, a proof of the base as a result of the fixing moment of the cylinder shall be furnished.

4.1.5 Welded joint between base and shell

An explicit proof ot the weld load can be omitted if the following conditions are complied with:

- weld thickness $a \ge 0.7 \cdot s_B$

- long-term welding factor $f_s \ge 0.6$

If one of these conditions is not complied with, a detailed proof of the stresses in the weld has to be furnished (e.g. FE-calculation).

In the case of tanks of one sheet up to a contents of 1000 I with wall thicknesses up to 10 mm, this applies also for long-term welding factors $f_{\rm S} \geq 0.4.$

4.1.6 Anchorages

If anchorages are required, at least 4 anchors shall be arranged $(z \ge 4)$.

The required anchor strength (e. g. for plugs) shall be calculated from the claw strength with consideration of the lifting arms.

The short-term wind loading is to be examined for the proof of the anchorages:

$$\frac{A_1 \cdot S}{z} \cdot \left[4 \cdot 10^3 \cdot \frac{M_W}{d} - 0.9 \cdot G_Z \right] \\ (b_{Pr} + s_B) \cdot s_B \cdot \frac{K_K^*}{2} \le 1$$
(18)

Temperature = 20°C

Figure 5 in section 5.5 shows the construction of an anchorage.

4.1.7 Lifting lugs

One of the possible lifting lug forms is shown in figure 6 (section 5.5). A precondition for the use of these lifting lugs is that only two lifting lugs per collecting device and a parallel lifter is used.

In order to be able to dispense with a proof of the introduction of loading in the upper band it has to be ensured that the lifting lug is not thicker than three times the wall thickness of the upper band. The diameter of hole (d_L) shall be matched for the diameter of the shackle (d_{Sch}).

It applies

$$s_{Z,1} \le erf s_{\ddot{O}} \le 3 \cdot s_{Z,1} mm$$
 (19)

$$d_{Sch} \le d_{I} \le 1.1 \cdot d_{Sch} \qquad mm \qquad (20)$$

It shall be proved that 1.5 times of the loading with a safety factor S_{M} = 1.75 can be borne momentarily at 20 °C.

The required wall thickness $(s_{\ddot{O}})$ of the lifting lug results from the proof of the face of a hole

$$s_{\ddot{O}} = \frac{1.5 \cdot \frac{G_{E}}{2} \cdot A_{1} \cdot S_{M}}{d_{Sch} \cdot (2 \cdot K_{K}^{*})} \qquad mm \qquad (21)$$

The maximum of the two following proofs is decisive for the width of the lifting lug ($b_{\ddot{O}}$).

$$b_{\ddot{O}} = \max(b_{\ddot{O}, 1}, b_{\ddot{O}, 2})$$

Proof of the shearing stress of the cross weld when lifting the lying collecting device

$$b_{\ddot{O},1} = \frac{1.5 \cdot \frac{G_{E}}{4} \cdot A_{1} \cdot S_{M}}{0.7 \cdot s_{Z,1} \cdot \frac{K_{K}^{*}}{2} \cdot f_{z}}$$
mm (22)

Eye bar

$$b_{\ddot{O},2} = \frac{1.5 \cdot \frac{G_{E}}{2} \cdot A_{1} \cdot S_{M}}{s_{\ddot{O}} \cdot \kappa_{\kappa}^{*}} + \frac{7}{3} \cdot d_{L} \qquad \text{mm} \qquad (23)$$

4.2 Proof of stability

Proofs of stability shall only be furnished in the case of outdoor installation. For the shell of the collecting device, a proof of the sufficient safety against stability due to axial thrust and shell pressure shall be furnished.

Precondition is that the ovality of the cylinder remains limited in the following form:

$$u = \frac{2 \cdot (d_{max} - d_{min})}{d_{max} + d_{min}} \cdot 100 \le 0.5$$
 (24)

4.2.1 Overlapping of influences

The decisive E-moduli are required for the calculation of the stability. The buckling of shells is a sudden occurence depending essentially on the imperfection, i. e., on the size of the prebuckles. The size of the pre-buckles increases with the increasing load period due to the flow properties of the material. However, the elastic resistance during the beating out is mainly determined by the short-term E-modulus at the present temperature. Due to this fact, the critical buckling stress σ_{k} is calculated with the temperature-dependent moduli $E_{k}^{\rm TeC}$.

The temperature- and time-dependent E-moduli for the essential thermoplastics are indicated in table 3 and 4 (section 5.4).

The most unfavourable combination of the loadings under consideration of the temperature behaviour of the thermoplastics shall be examined.

4.2.2 Axial stability

For each band i, the axial compressive strain out of own weight and wind loading existing at the lower edge is determined and secured with the buckling stress $\sigma_{k,i}$.

The buckling stress may, simplified, be calculated according to the following equation:

$$\sigma_{k,i} = \alpha \cdot 0.62 \cdot \mathsf{E}_{\mathsf{K}}^{30\,^{\circ}\mathsf{C}} \cdot \frac{\mathsf{S}_{\mathsf{Z},i}}{\mathsf{r}} \leq \mathsf{K}_{\mathsf{K}}^{*} \qquad \mathsf{N/mm}^{2} \qquad (25)$$

with
$$\alpha = \frac{0.7}{\sqrt{\frac{E_{K}^{20^{\circ}C}}{E_{L}^{20^{\circ}C}} \cdot \left(1 + \frac{r}{100 \cdot s_{Z,i}}\right)}}$$
 (26)

The following condition for each band i must be complied with:

$$\eta_{A,i} = \frac{S \cdot A_{21} \cdot \sum_{k \neq i} \sigma_i^{\text{vorh}}}{\sigma_{k \neq i}} \le 1$$
(27)

4.2.3 Pressure stability of the shell

The depression arising out of p_{eu} is secured with the critical pressure of the shell $\mathsf{p}_{kM}.$

The following condition must be complied with:

$$\eta_{\rm M} = \frac{\mathbf{S} \cdot \mathbf{A}_{21} \cdot \mathbf{p}_{\rm eu}}{\mathbf{p}_{\rm kM}} \le 1 \tag{28}$$

The critical pressure of the shell of the non-graduated cylinder shall be calculated according to the equation:

$$p_{kM} = 0.64 \cdot C^* \cdot E_{K}^{30\,^{\circ}C} \cdot \frac{r}{h_Z} \cdot \left(\frac{s_Z}{r}\right)^{2.5} \qquad \text{N/mm}^2 \qquad (29)$$

with $C^* = 0.6$ for open tanks.

The critical pressure of the shell of the graduated tank may be calculated on an equivalent cylinder with three bands according to DIN 18800-4:

$$p_{kM} = 0.64 \cdot \beta \cdot C^* \cdot E_{K}^{30\,^{\circ}C} \cdot \frac{r}{l_0} \cdot \left(\frac{s_0}{r}\right)^{2.5} \qquad N/mm^2 \qquad (30)$$

The $\beta\text{-values}$ can be found in the tables 20a to c of the DIN 18800-4.

A proof for the interaction between axial and pressure stability of the shell can be dispensed with.

4.3 Proof of the lifting security

For the case of damage it shall be proved that the 0.9fold weight of the tank is higher than the lifting force of the immersed part of the tank.

5 Annex

5.1 Explanations

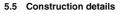
This supplementary sheet no. 2 to the standard DVS 2205-2 has been drawn up by the DVS-AG W4.3b (Constructive design/ apparatus engineering) together with the Board of Experts "Thermoplastic tanks and pipes" (project group "calculation").

5.2 Standards and directives

Draft DIN EN 1778	Characteristic values for welded thermoplastic constructions: definition of the allowable stresses and moduli for the calculation of thermoplastic components
DIN 1055-3	Design loads for buildings, live loads
DIN 1055-4	Design loads for buildings, live loads, wind loadings of buildings which are not susceptible to vibration
DIN 1055-5	Design loads for buildings, live loads, snow loading and ice loading
DIN 4740-1	Ventilation and air conditioning installations; pipes made of unplasticized polyvinyl chloride (PVC-U); calculation of the minimum wall thicknesses
DIN 8061/62	Pipes made of unplasticized polyvinyl chloride
DIN 8074/75	Pipes made of high-density polyethylene (PE-HD)
DIN 8077/78	Pipes made of polypropylene (PP)
DIN 16925	Extruded sheets made of polyethylene (PE); technical delivery conditions
DIN 16927	Sheets made of polyvinyl chloride (rigid PVC) ; technical delivery conditions
DIN 16961-1 and -2	Thermoplastic pipes and fittings with shaped wall and smooth interior surface of the pipe
DIN 16971	Extruded sheets made of polypropylene (PP); technical delivery conditions
DIN 18800-4	Stability cases; shell bulges
DVS 2201-2	Testing of semi-finished products of thermo- plastics; weldability; test methods; requirements
DVS 2205	Calculation of containers and apparatus made of thermoplastics;
-1	Characteristic values
-3	Welded joints
-4	Flanged joints
DVS 2206	Testing of components and constructions made of thermoplastic materials
DVS 2211	Filler materials of thermoplastics
ISO/DIS 11833-1	Plastics - Unplasticized polyvinyl chloride sheets - Types, dimensions and characteristics - Part 1 Sheets of thickness not less than 1 mm
prEn/ISO 14632	Extruded sheets of high-density polyethylene (PE- HD) Requirements and test methods
prEn/ISO 15013	Extruded sheets of polypropylene (PP) Requirements and test methods
prEN/ISO (CEN/TC 249/ SC6-WI 009)	Extruded sheets of polyvinylidene fluorid (PVDF) Requirements and test methods
5.3 Literature	

[1] Timoshenko, S: Theory of Plates and Shells. McGraw Hill Book Comp, New York/London 1959

- [2] Kempe, B.: Measurements of the deformation of a tank of high-density polyethylene by a change in temperature. Schw. Schn. 42 (1990), H. 4, p. 173.
- [3] Tuercke, H.: On the stability of tanks made from thermoplastic materials, DIBt-information, copy-book 5/ 1995.
- 5.4 Temperature and time-dependent elasticity moduli for stability calculations


Table 3. Temperature-dependent short-term E-moduli $E_{K}^{T^{O}C}$ in N/mm².

Material	$\leq 10^{\circ}C$	20°C	30°C	40°C	50°C	60°C	70°C	80°C
PE-HD	1100	800	550	390	270	190	-	-
PP-H	1400	1200	960	770	620	500	400	320
PP-B	1200	1000	790	630	500	400	320	250
PP-R	1000	800	620	490	380	300	230	180
PVC-NI	3200	3000	2710	2450	2210	2000	-	-
	$\leq 10^{\circ}C$	20°C	40°C	60°C	80°C	100°C	-	-
PVDF	1900	1700	1330	1050	820	650	1	-

Table 4. Time-dependent long-term E-moduli $E_L^{20^\circ C}$ in N/mm².

Material	1 year	5 years	10 years	15 years	20 years	25 years
PE-HD	308	269	254	245	239	235
PP-H	464	393	365	350	340	330
PP-B	405	334	307	293	283	275
PP-R	322	298	288	283	279	276
PVC-NI	1800	1695	1652	1627	1609	1600
PVDF	810	763	744	733	725	720

Note: The long-term E-moduli for PE-HD apply for stresses up to 0.5 N/mm², for PP up to 1 N/mm². The stress dependence of the E-moduli for PVC-NI and PVDF is negligible.

This section describes the examples of construction for

- Distance collecting device/tank
- Base anchorage
- Lifting lugs
- Connection shell/base
- Edge of collecting devices

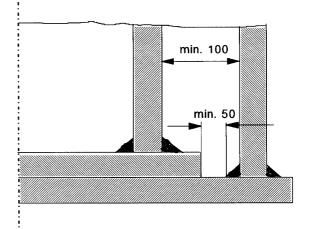
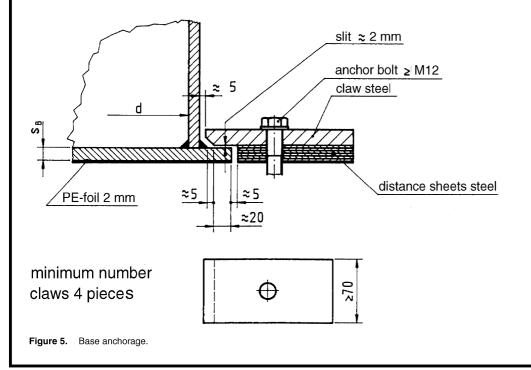
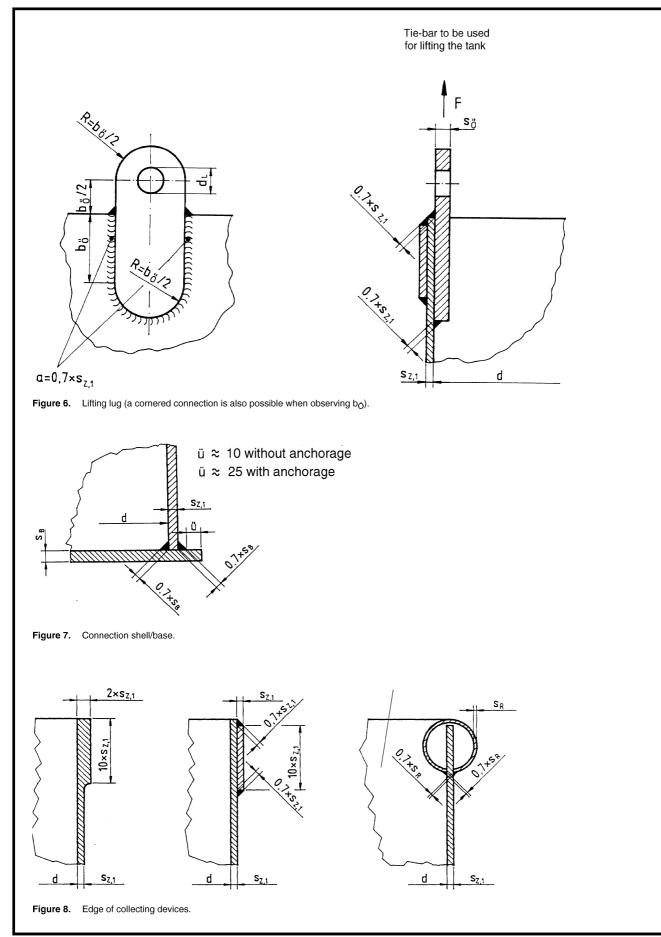




Figure 4. Distance collecting device/tank.

Design of thermoplastic tanks and apparatus Welded joints

Directive DVS 2205-3

D V S

(April 1975)

975)

Contents:

- A. Scope
- B. General welding principles
- C. Welding rules
 - 1. Frame base 1.1 to 1.12
 - 2. Shell seams 2.1 to 2.2
 - 3. Nozzles and loose flanges 3.1 to 3.8
 - 4. Collars and flanges 4.1 to 4.2
 - 5. Supporting flanges and rings 5.1 to 5.4
 - 6. Stiffeners 6.1 to 6.5
 - 7. Other joints 7.1

A. Scope

The following directive specifies the design and construction of welded joints in tanks, apparatus and pipelines. It supplements the existing standards relating to this equipment.

The rules are based on an evaluation of many years of experience. The examples cannot replace the necessary design calculations for construction. This applies particularly to deviations from the welding principles specified in section B.

The dimensions of individual components (wall thicknesses, diameters etc.) are to be taken from the specification sheets for the various tank forms.

B. General welding principles

B.1.

The welds must be dimensioned so that in the case of supporting welds the cross-sections present are fully connected or in the case of fillet welds the diameters required for load transmission are present. Butt welds are to be preferred.

B.2

All joints should be counter-welded at the base of the weld or welded from both sides. Seams accessible from one side should have a deep penetration at the base of the weld.

B.3.

With butt welds of different wall thicknesses a constant load transmission should be aimed for, e.g. by bevelling the thicker wall.

B.4.

Accumulations of welds should be avoided. Cross-welds at loadbearing wall sections are not permissible. When fitting stiffeners or similar in the zone of load-bearing welds free sections of adequate size should be provided.

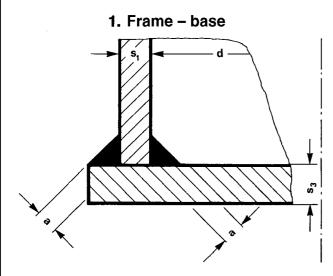
B.5.

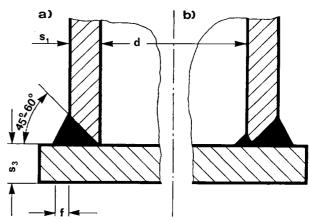
Joint forms are subject to the specifications of DIN 16960, sheet 1, insofar as no special rulings are made in the following examples. For all welds the dimensions for the joint forms should be precisely determined as a function of the welding process and the dimensions of the filler material, taking into account base of the weld finish.

B.6.

Load-bearing welds should be accessible for testing. If such welds are covered by components, then the weld should be tested before the component is welded on or the component should be designed to allow testing.

This publication has been drawn up by a group of experienced specialists working in an honorary capacity and its consideration as an important source of information is recommended. The user should always check to what extent the contents are applicable to his particular case and whether the version on hand is still valid. No liability can be accepted by the Deutscher Verband für Schweißtechnik e.V., and those participating in the drawing up of the document.


DVS, Technical Committee, Working Group "Joining of Plastics"


Orders to: DVS-Verlag GmbH, P. O. Box 10 19 65, 40010 Düsseldorf, Germany, Phone: +49(0)211/1591-0, Telefax: +49(0)211/1591-150

05-3

Page 2 to DVS 2205-3

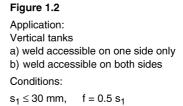

C. Welding rules

Figure 1.1 Application: Vertical tanks with weld accessible on both sides Conditions:

 $s_3 > s_1: \ a = 0.7 \ s_1 \qquad s_1 > s_3: \ a = 0.7 \ s_3$

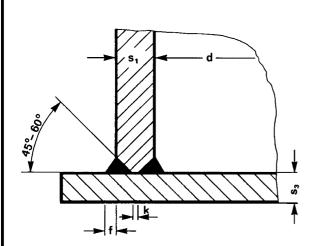


Figure 1.3 Application: Vertical tanks with weld accessible on both sides Condition: $f = 0.3 s_1, k = 0.1 s_1$

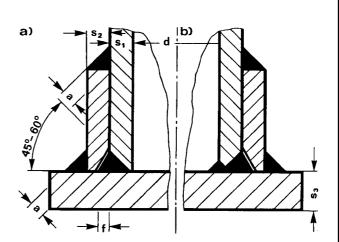
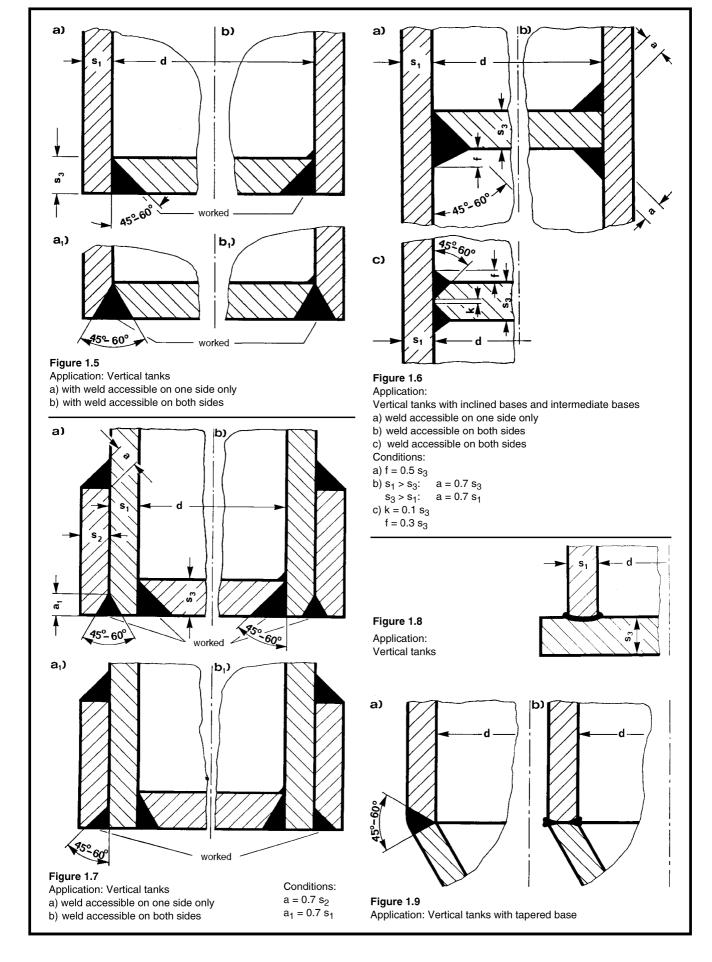
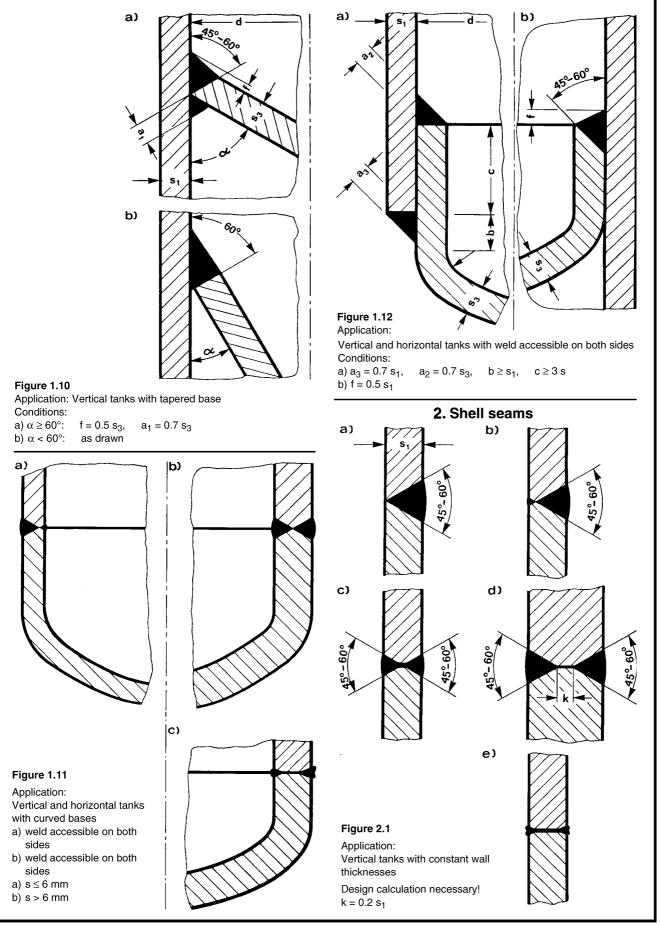
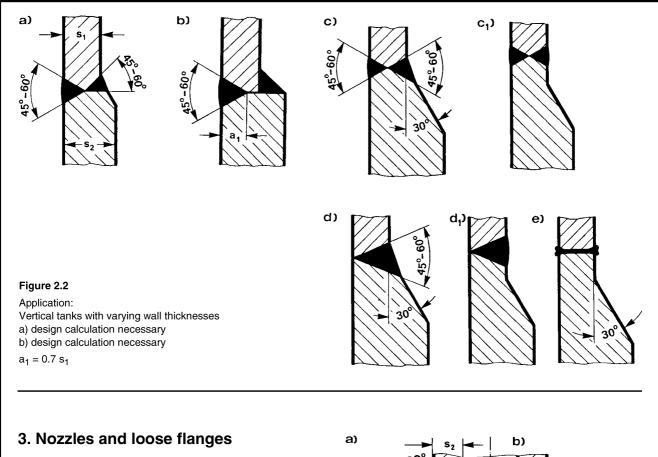
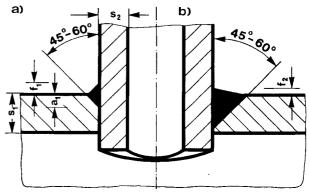
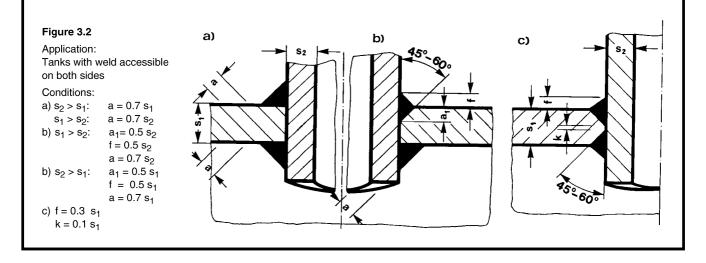
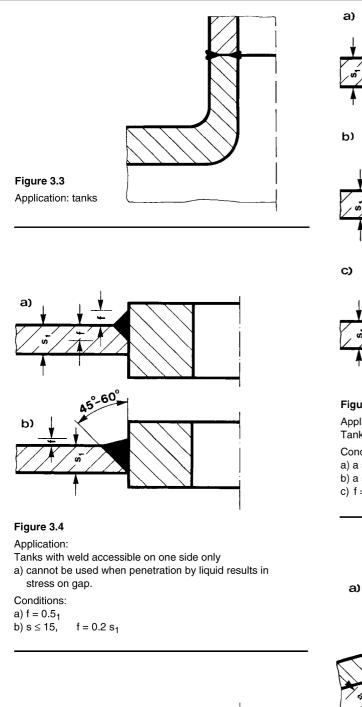
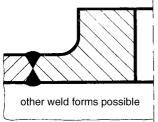





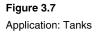
Figure 1.4 Application: Vertical tanks a) with weld accessible on one side only b) with weld accessible on both sides Conditions: $a = 0.7 s_2$, $f = 0.5 s_1$

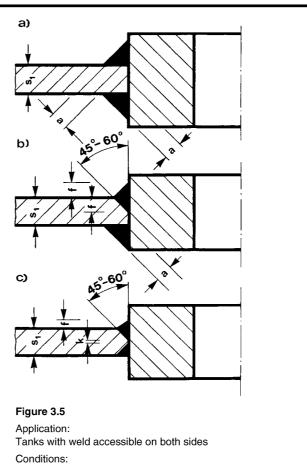

Figure 3.1


Application:


Tanks with weld accessible on one side only a) cannot be used when penetration by liquid results in stress on gap


Conditions:


a) s ₂ > s ₁ :	a ₁ = 0.5 s ₁ ,	f ₁ = 0.5 s ₁
	a ₁ = 0.5 s ₂ ,	f ₁ = 0.5 s ₂
b) s ₁ ≤ 15 m	m, f ₂ = 0.2	s ₁



a) $a = 0.7 s_1$ b) $a = 0.7 s_1$, $f = 0.5 s_1$ c) $f = 0.3 s_1$, $k = 0.1 s_1$

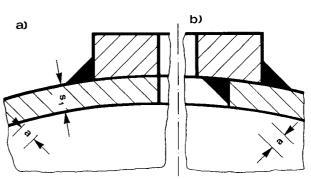
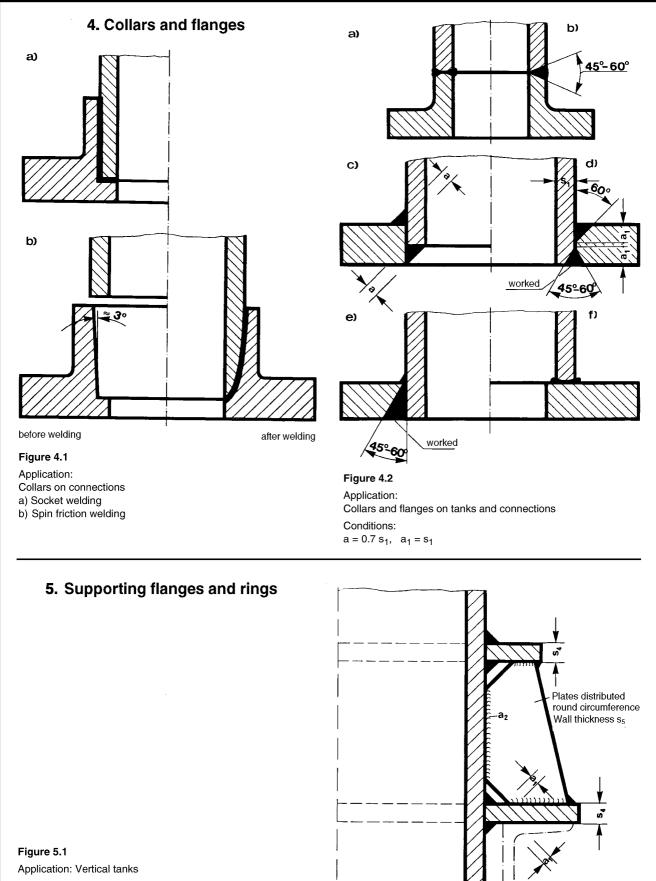


Figure 3.6

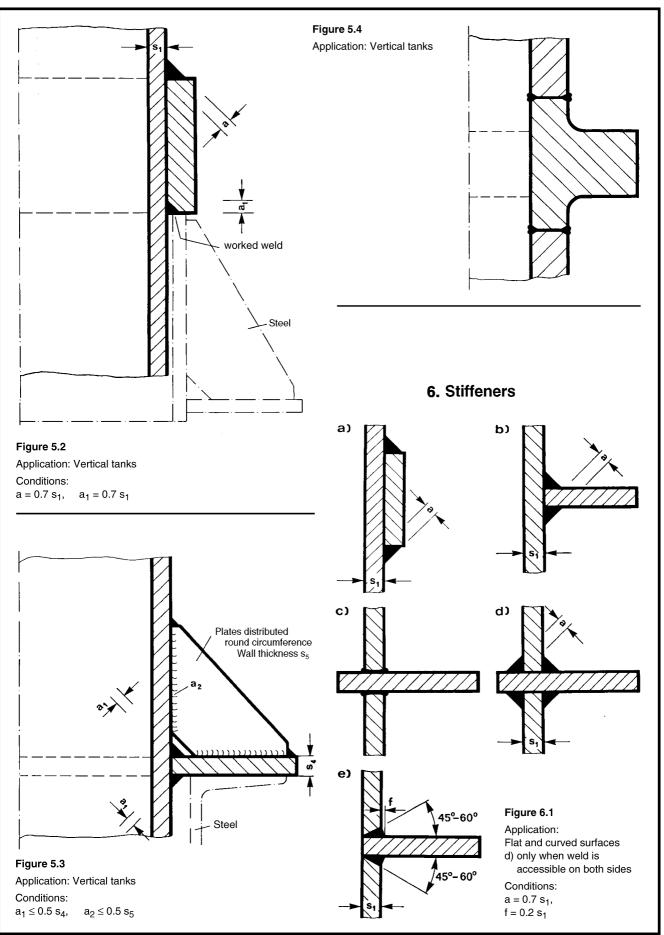
Application: Tanks

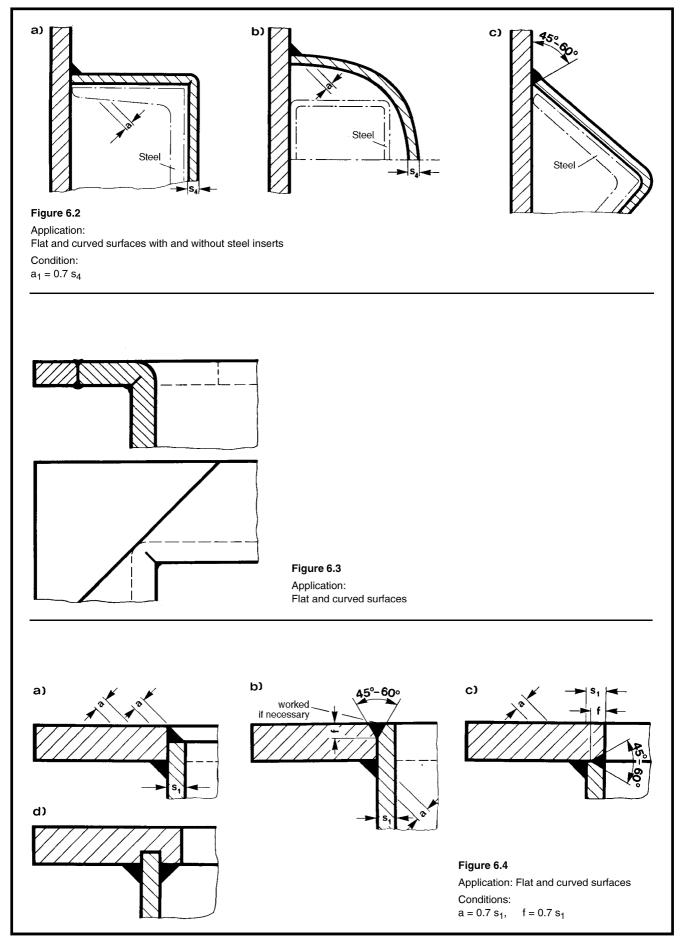
a) with weld accessible on one side only


Cannot be used when penetration by liquid results in stress on gap.

b) with weld accessible on both sides

Condition:


a = 0.7 s₁


Steel

 $\begin{array}{ll} \mbox{Conditions:} \\ a_1 \leq 0.5 \ s_4 & a_2 \leq 0.5 \ s_5 \end{array}$

Page 8 to DVS 2205-3

Page 10 to DVS 2205-3

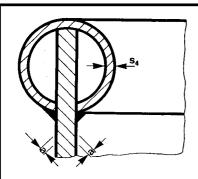
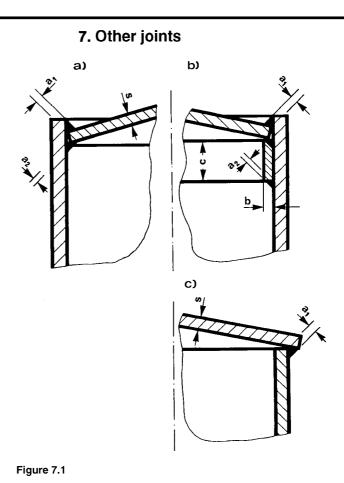



Figure 6.5 Application: Flat and curved surfaces Condition: $a = 0.7 s_4$

Application: Pressureless tanks a) accessible from inside b) and c) inaccessible from inside Conditions: $a_1 = 0.5 \text{ s}, a_2 = 0.2 \text{ s}, b = \text{ s}, c = 5 \text{ s}$

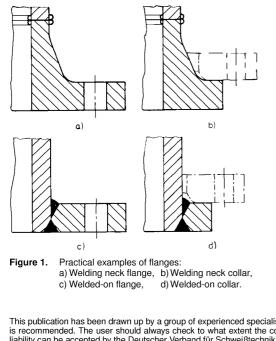
Calculation of thermoplastic tanks and apparatuses – Flanged joints

Directive DVS 2205-4

(November 1988)

D V S

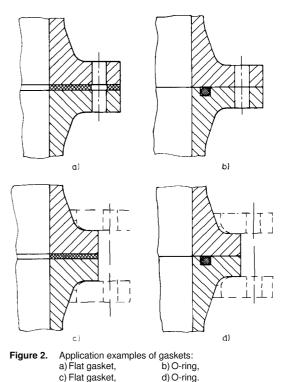
Contents:


- 1 Scope
- 2 General
- 3 Design principles
- 4 Calculation data
- 5 Calculation of the bolts
- 5.1 General
- 5.2 Calculation of the bolt forces in case of a continuous gasket
- 5.3 Calculation of the bolt forces in case of O-rings
- 6 Calculation of the flanges
- 6.1 General
- 6.2 Welding neck flanges and welded-on flanges with continuous gasket or with O-ring
- 6.3 Welding neck flanges and welded-on loose collars with continuous gasket or with O-ring
- 7 Calculation of metal flanges
- 8 Explanations

1 Scope

The following design and calculation principles relate to circular flanged joints of the following thermoplastic materials

Polyethylene high density	(PE-HD)
Polypropylene	(PP)
Polyvinyl chloride	(PVC-U)
Polyvinylidene fluoride	(PVDF)


The flanges referred to in the following comprise welding neck flanges, welding neck collars, welded-on flanges and welded-on collars, Figure 1.

2 General

This sheet is based on the AD data sheets B7 and B8, see explanations 8. Attention is to be drawn to the German Accident Prevention Regulation VBG 17 "Pressure Vessels".

The flanged joint is calculated only in association with continuous gasket or O-ring, since other seals lead to very high flexural moments and these in turn give rise to uneconomical flange dimensions, Figure 2.

3 Design principles

The number of bolts should be chosen as large as possible, to ensure uniform sealing.

The number of bolts should be at least four.

The bolt spacing should not exceed 5 d_L , but should maximum be 80 mm. This does not apply to loose flanges of steel and pipeline connecting flanges.

At low pressure the calculation may produce a flange height which is so small that a uniform seal is difficult to achieve even when the given design principles are applied. For design directions see Supplement.

This publication has been drawn up by a group of experienced specialists working in an honorary capacity and its consideration as an important source of information is recommended. The user should always check to what extent the contents are applicable to his particular case and whether the version on hand is still valid. No liability can be accepted by the Deutscher Verband für Schweißtechnik e.V., and those participating in the drawing up of the document.

DVS, Technical Committee, Working Group "Joining of Plastics"

In selecting the gasket material – gaskets of soft material should be preferred – ist thermal and chemical resistance must be considered.

For flammable and highly toxic gases attention is to be drawn to the German Accidents Prevention Regulation "Compressed, liquefied gases and gases dissolved under pressure" VBG 62 §20 section 3.

Welded joints see directive 2205 Part 3.

4 Calculation data

a, a _D	arm of bolt force in mm
b	effective double flange width in mm
bD	gasket width in mm
с	corrosion allowance in mm
da	outside diameter of flange in mm
di	inside diameter of cylindrical component in mm
d _t	pitch circle diameter in mm
d ₁	inside diameter of loose flange in mm
d ₂	average contact diameter flange/collar in mm
d ₃	$d_1 + 2 \times flange$ rounding diameter in mm
d _D	average gasket diameter in mm
d _K	bolt shank diameter in mm
dL	bolt hole diameter in mm
ď L	reduced bolt hole diameter in mm
h _D	gasket height in mm
h _F	required height of a flange plate in mm
k ₀	gasket parameter for predeformation in mm
k ₁	gasket parameter for working condition in mm
La	neck height in mm
n	number of bolts –
р	working pressure above atmospheric in bar
p'	test pressure in bar
S ₁	wall thickness of cylindrical component in mm
v	weakening coefficient -
у ₁ , у ₂	lever arms in case of O-ring in mm
C, C_1	auxiliary value –
κ _D	deformation resistance of gasket material in N/mm ²
A_2	reduction factor for the influence of the envi-
-	ronment –
A ₄	reduction factor for the influence of the specific
•	toughness –
K _(A1, A3)	strength parameter value of the thermoplastic in
	working condition in N/mm ²
K _{Schr}	yield limit of bolt material in N/mm ²
K _{FI}	yield limit of loose flange material (metal) in N/mm ²
K ⁽ (A1, A3)	strength parameter of the thermoplastic in test
(***,**=)	condition in N/mm ²
P _{DV}	predeformation force in N
P _{FI}	surface pressure in N/mm ²
P _{SB}	bolt force in working condition in N
P' _{SB}	bolt force at test pressure in N
P _{SO}	bolt force in assembled condition prior to appli-
00	cation of pressure in N
S _M	safety factor for metals in working condition -
S' _M	safety factor for metals in test and assembled
	condition –
S	safety factor for thermoplastics –
W ₁ , W ₂ , W ₃	flange resistance in mm ³
Z	auxiliary value –

5 Calculation of the bolts

5.1 General

The inside diameter of the thread of a rigid bolt results from the largest value of the following formulae:

for the working condition:

$$d_{K} = Z_{\sqrt{\frac{P_{SB}}{K_{Schr} \cdot n}}} + c, \qquad (1)$$

for the assembled condition:

$$d_{K} = Z_{\sqrt{\frac{P_{SO}}{K_{Schr} \cdot n}} + c.$$
(2)

Z~=~1,75 for solid bolts, for example according to DIN 2509 and DIN 931, with known yield limit, where p^{\prime} \leq 1,3 p.

c = 3 mm

External forces, for example due to thermal expansion, are not covered by this.

5.2 Calculation of the bolt forces in case of continuous gasket

5.2.1 Working condition

$$P_{SB} = \frac{p}{10} \left(\frac{\pi \cdot d_D^2}{4} + 3.8 d_D \cdot k_1 \right)$$
(3)

5.2.2 Assembled condition

(4)

If P_{SO} is higher than $\mathsf{P}_{SB},\,\mathsf{P}_{SO}$ may be reduced:

 $\mathsf{P}_{SO} \; = \; \mathsf{P}_{DV} \; = \; \pi \cdot \mathsf{d}_D \cdot \mathsf{k}_o \cdot \mathsf{K}_D.$

$$P_{SO} = 0.2 P_{DV} + 0.8 \sqrt{P_{SB} \cdot P_{DV}}.$$
 (5)

The gasket parameters k_1 and $k_0 \, x \, K_D$ are to be taken from Table 1.

5.3 Calculation of the bolt forces in case of O-rings

5.3.1 Flanges with O-ring according to Figure 3:

$$\mathsf{P}_{\mathsf{SB}} = \frac{\mathbf{p} \cdot \boldsymbol{\pi} \cdot \mathsf{d}_{\mathsf{D}}^2}{40} \cdot \frac{\mathsf{y}_1}{\mathsf{y}_2}.$$
 (6)

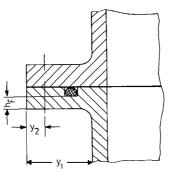
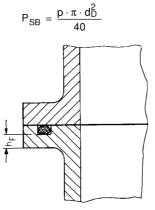
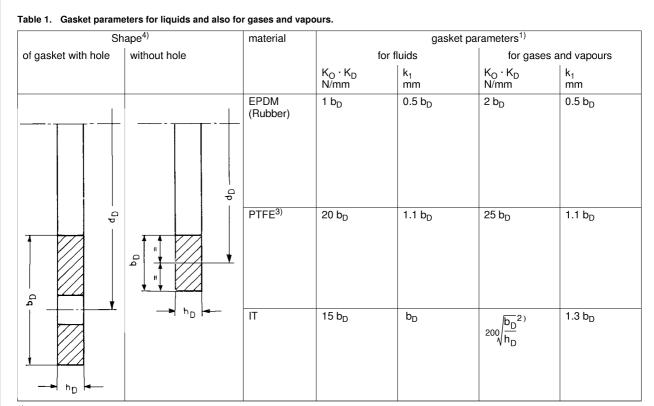




Figure 3. Flanges with O-ring.

5.3.2 Collars with O-ring according to Figure 4:

They apply to machined and undamaged sealing faces and subject to the hardness of the gasket material being lower than that of the flange material.
 Gas-tight quality assumed.

³⁾ Polytetrafluorethylene.

⁴⁾ For flanges with continuous gasket, the effective gasket width is: 0,5 b_D .

6 Calculation of the flanges

6.1 General

The design of the flanges is determined by the highest flange resistance required.

For the working condition:

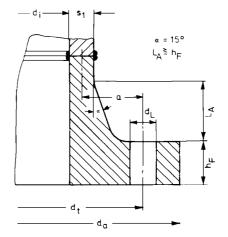
$$W_{1} = \frac{P_{SB} \cdot A_{2} \cdot A_{4} \cdot S}{K_{(A_{1},A_{3})}} \cdot a$$
(8)

For the test condition:

$$W_2 = \frac{P'_{SB} \cdot A_4 \cdot S}{K'_{(A_1, A_3)}} \cdot a$$
(9)

For the assembled condition, the arm a_D = 0. Consequently, no W_3 is to be calculated.

The values for $K_{(A1,\ A3)},\ K^{*}_{(A1,\ A3)},\ A_{2},\ A_{4}$ and S are to be taken from the directive DVS 2205 Part 1.


6.2 Welding neck flanges and welded-on flanges with continuous gasket or with O-ring according to Figure 5 and Figure 6

The arm of the bolt force is for working and test condition:

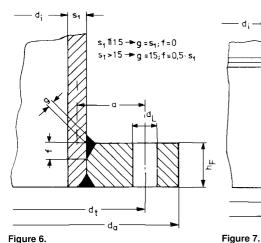
$$a = \frac{d_t - d_i - s_1}{2}.$$
 (10)

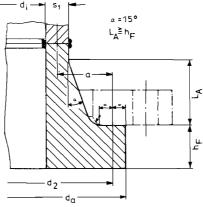
For the assembled condition $a_D = 0$.

$$a_{\rm D} = 0.$$
 (11)

The required height of the flange plate is:

$$h_{\rm F} = C_{\rm V} \frac{C_1 \cdot W}{d_{\rm t} \cdot \pi - d_{\rm L} \cdot n}.$$
 (12)


For welding neck flanges C = 0,9, C₁ = 2, for welded-on flanges C = 1,1, C₁ = 3.


6.3 Welding neck collars and welded-on collars with continuous gasket or with O-ring according to Figure 7 and Figure 8

The arm of the bolt force for working and test condition is:

$$a = \frac{d_2 - d_1 - s_1}{2}.$$
 (13)

Figure 5. Welding neck flange (gasket not shown on drawing).

Welding neck collar

(gasket not shown on drawing).

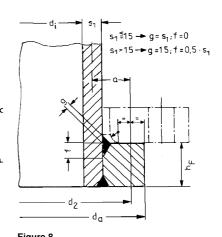


Figure 6. Welded-on flange (gasket not shown on drawing).

For the assembled condition:

h

$$\mathbf{a}_{\mathsf{D}} = \mathbf{0}.\tag{14}$$

The required height of the collar is

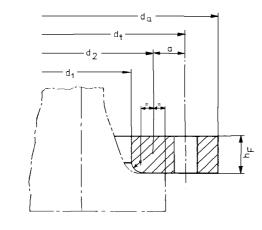
$$F_{\rm F} = C_{\rm V} \sqrt{\frac{C_1 \cdot W}{d_2 \cdot \pi}}.$$
(15)

For welding neck collars C = 0,9, $C_1 = 2$,

for welded-on collars $C = 1, 1, C_1 = 3$.

The surface pressure between loose flange and collar should be checked:

$$P_{FI} = \frac{1.27 P_{SB}}{(d_a^2 - d_3^2)} \le K_{(A_1, A_3)}$$
(16)


$$\mathsf{P}_{\mathsf{FI}} = \frac{1,27 \; \mathsf{P}_{\mathsf{SO}}}{(\mathsf{d}_a^2 \; - \mathsf{d}_3^2)} \le \mathsf{K}_{(\mathsf{A}_1,\mathsf{A}_3)} \tag{17}$$

7 Calculation of loose metal flanges according to Figure 9

The design of the flange is determined by the highest required flange resistance.

For the working condition:

Figure 8. Welded-on collar (gasket not shown on drawing).

For the test condition:

$$W_2 = \frac{P'_{SB} \cdot S'_M}{K_{FI}} \cdot a.$$
(19)

For the assembled condition:

$$W_3 = \frac{P_{SO} \cdot S'_M}{K_{FI}} \cdot a.$$
(20)

If P_{SO} is higher than P_{SB} , the value for P_{SO} is to be entered for P_{SB} in equation (18). Equation (20) is then left out of account.

The values for K_{FI} and S_M and S^{\prime}_M are to be taken from the ADData Sheets. The arm of the bolt force for the working, test and assembled condition is

$$a = \frac{d_t - d_2}{2}.$$
 (21)

The required height of the flange plate is

$$h_{\rm F} = \sqrt{1.27 \, \frac{\rm W}{\rm b}},\tag{22}$$

$$b = d_{a} - d_{1} - 2d'_{L}$$
(23)

with d'_L according to Figure 10.

wherein

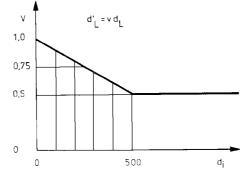


Figure 10. Reduced bolthole diameter

8 Explanations

The mode of calculation of the collars was drawn up on the basis of AD-Data Sheet B 8, bearing in mind the difference in elastic deformation between loose steel flange and plastic collar. This is reflected also in the calculation of the loose steel flange.

Calculation of thermoplastic tanks and appartuses Welded flanges, welded collars – constructive details

Directive DVS 2205-4 Supplement (November 1996)

Contents:

- 1 Scope
- 2 Design conditions
- 3 Tables of dimensions
- 3.1 Welded flanges
- 3.2 Welded collars
- 3.3 Screw starting torque

1 Scope

This directive describes the design of pressure-loaded welded flanges and welded collars in accordance to the design conditions for tanks and apparatuses out of thermoplastics as mentioned in section 2

Polyethylene high density(PE-HD)Polypropylene(PP-H, PP-B, PP-R)Polyvinylchloride(PVC-NI, PVC-RI)Polyvinylidenefluoride(PVDF)

in the general application range:

Diameter 500 up to 4000 mm for welded flanges and Diameter 500 up to 1200 mm for welded collars

The welded flanges referred to in the following comprise weldedon collars (figures 1 and 2) and welded neck flanges (figure 3) with flat gaskets.

The welded collars comprise welded-on collars (figures 4 and 5) and welded neck collars (figure 6) with flat gaskets and O-rings.

2 Design conditions

The design of welded flanges and welded collars is based on the directives DVS 2205-1 and -4.

The heights of the flange plate $h_{\rm F}$ are calculated with continuous gasket out of elastomers (shore-A hardness 60°), because this gasket material is mainly used for tanks and apparatuses out of thermoplastics. If other gasket materials are specified, $h_{\rm F}$ has to be calculated c.

Additionally, the height ${\rm h}_{\rm F}$ has been calculated under the following conditions:

- 1. Pressure p = 0,5 bar as fictitious pressure, in order to get a usable height of the welded flange resp. of the welded collar.
- Creep strength K_(A1, A3) of the material for the loading time of 25 years at a working temperature of 30°C according to directive DVS 2205-1. The standard DIN 8075 is valid for polyethylene. DIN 8078 is valid for polypropylene Type 1 and 2, DIN 8061 are considered for polyvinylchloride (PVC-U and PVC-RI Type 1 and 2).
- 3. Safety factor S = 2,0

If the working conditions differ from the above mentioned, h_F has to be calculated accordingly.

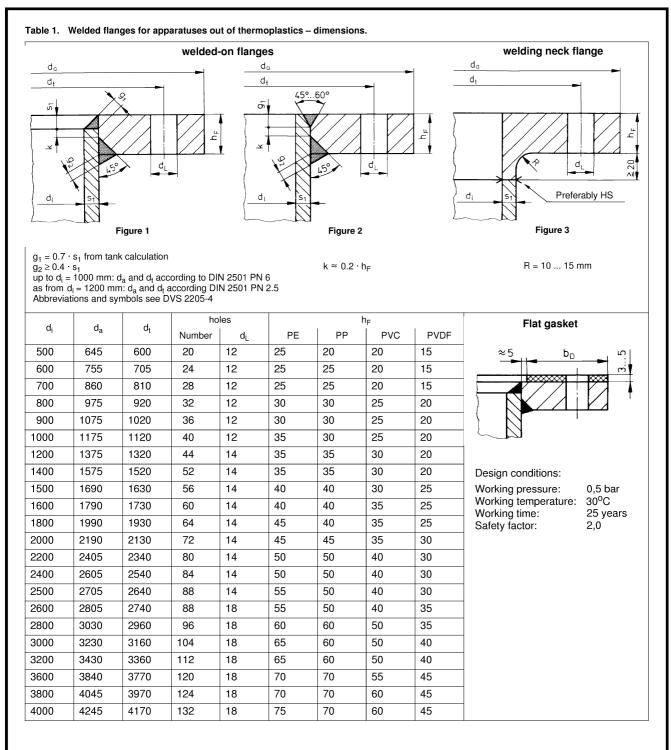
Connecting bolts have to be used basically with plain washers according to DIN 9021. Both, the connecting bolts and the plain washers should be made of stainless steel (e.g. A2, A4 according to DIN 267-11) in order to prevent corrosion.

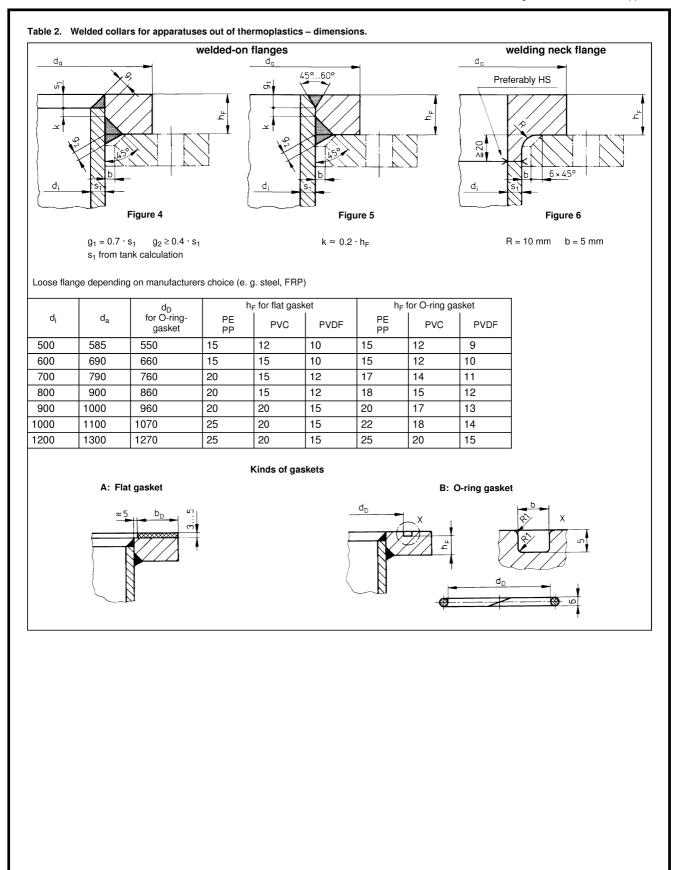
3 Tables of dimensions

- 3.1 Welded flanges table 1
- 3.2 Welded collars table 2

3.3 Screw tightening moments

The required screw tightening moments are as follows:


M 10: 15 Nm M 12: 25 Nm M 16: 50 Nm


The installation of the connection bolts should be performed by means of a torque wrench. The screws have to be torqued evenly. Exceeding the mentioned tightening moments has to be avoided.

The above mentioned screw tightening moments are valid for flange connections out of thermoplastics at the application of flat gaskets out of elastomers with a shore-A hardness of approximately 60°. If profiled gaskets are used, the mentioned screw starting torques may be reduced by 20 %.

This publication has been drawn up by a group of experienced specialists working in an honorary capacity and its consideration as an important source of information is recommended. The user should always check to what extent the contents are applicable to his particular case and whether the version on hand is still valid. No liability can be accepted by the Deutscher Verband für Schweißtechnik e.V., and those participating in the drawing up of the document.

DVS, Technical Committee, Working Group "Joining of Plastics"

Calculation of thermoplastic tanks and apparatus -**Rectangular tanks**

(July 1987)

Contents:

- Scope 1
- 2 General
- 3 Calculation values
- 4 Calculation of various tank constructions
- 5 Explanations 6
- Literature

1 Scope

The following rules for the design and calculation apply to rectangular tanks for the engineering of apparatus of thermoplastic materials, in particular

Polyvinyl chloride (PVC) Polypropylene (PP)

High density polyethylene (PE-HD)

The tanks may be strengthened from the outside by means of ribs or frames made of the same or stiffer materials, such as glass-fibre reinforced plastics (GRP) or steel. With the exception of hydrostatic pressures, no appreciable pressures occur. For the calculation, in principle, the plate theory was used. Reference to the membrane theory will be found in subclauses 4.6.2 and 5.

2 General

In the design and processing in particular the following Data Sheets should be considered:

DVS 2205 Part 1

"Calculation of thermoplastic tanks and apparatus, characteristic values"

DVS 2205 Part 3

"Calculation of thermoplastic tanks and apparatus, welded ioints"

DVS 2205 Part 4

"Calculation of thermoplastic tanks and apparatus, flanged joints".

Welds must be placed into regions of low bending moments; the maximum moments can be seen in figures 6,7 and 8. Significant differences in expansion between strengthening and wall, caused by temperature changes, must be allowed for in the design.

3 Calculation values

A, B, C, D	operands
a mm	length of tank or of panel
b, b _n mm	heights of tank or of panel
a', b' mm	lengths and heights of panels assigned to strengthening
c mm	width of tank or of panel

-								
Е	N/mm ²	elastic	modulus	of	the	beam	material	(with
		plastics	s, correspo	ndi	ng to	E _c)		

Ec	N/mm ²	modulus of creep (from DVS 2205 Part 1)
f	m	maximum deflection
F	N	force
J	mm ⁴	moment of inertia of edge strengthening
k		coefficient
М	Nmm	bending moment
р	N/mm²	excess pressure on tank bottom
Р _т	N/mm²	mean value of excess pressure for calculation of wall thickness
p _n	N/mm²	mean value of excess pressure for calculation of the beam
s	mm	wall thickness
W	mm³	moment of resistance of edge strengthening
α ₁ α	5	coefficient of deformation
β ₁ β ₅	;	coefficient of wall thickness
σ_{zul}	N/mm²	permissible stress (here the stress values given in DVS 2205 Part 1 may be used)

4 Calculation of various tank constructions

The calculation procedures are given for the following tank constructions, Figures 1 to 5.

4.1 Tanks without strengthening, resting evenly on a flat surface

The calculation of the walls depend on their side ratio. The thickness of the bottom must be at least of the same order of magnitude as that of the side walls, Figure 6.

4.1.1 Side ratio a/b < 0.5

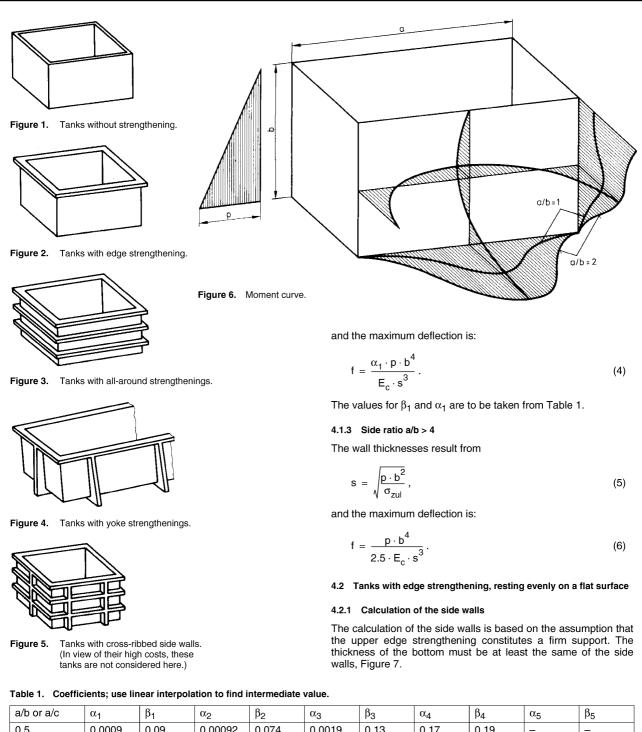
The required wall tickness is

$$s = \sqrt{\frac{p \cdot a^2}{2.5 \cdot \sigma_{zul}}} .$$
 (1)

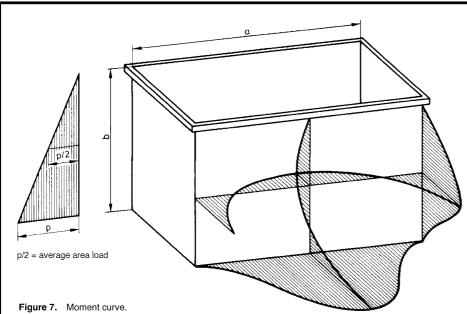
The maximum deflection is:

$$f = \frac{p \cdot a^4}{k \cdot 32 \cdot E_c \cdot s^3}.$$
 (2)

The factor k is to be chosen between 1 (for a < b) and 2 (for $a/b \approx 0.5$)


4.1.2 Side ratio $0.5 \le a/b \le 4$

The minimum wall thickness results from:


$$s = \sqrt{\beta_1 \frac{p \cdot b^2}{\sigma_{zul}}}$$
(3)

This publication has been drawn up by a group of experienced specialists working in an honorary capacity and its consideration as an important source of information is recommended. The user should always check to what extent the contents are applicable to his particular case and whether the version on hand is still valid. No liability can be accepted by the Deutscher Verband für Schweißtechnik e.V., and those participating in the drawing up of the document.

DVS, Technical Committee, Working Group "Joining of Plastics"

a/b or a/c	α1	β ₁	α2	β ₂	α_3	β ₃	α_4	β ₄	α_5	β ₅
0.5	0.0009	0.09	0.00092	0.074	0.0019	0.13	0.17	0.19	_	_
0.6	0.0020	0.10	0.0020	0.097	0.0037	0.17	0.19	0.21	-	-
0.7	0.0035	0.12	0.0032	0.12	0.0061	0.22	0.23	0.22	-	-
0.8	0.0055	0.15	0.0049	0.15	0.0090	0.26	0.26	0.23	-	-
0.9	0.0075	0.18	0.0068	0.18	0.012	0.29	0.29	0.23	-	-
1.0	0.011	0.21	0.0088	0.21	0.015	0.31	0.32	0.21	0.045	0.29
1.2	0.017	0.27	0.013	0.26	0.021	0.39	0-35	0.27	0.063	0.38
1.4	0.028	0.33	0.017	0.31	0.025	0.44	0.37	0.32	0.078	0.45
1.6	0.046	0.43	0.020	0.34	0.028	0.47	0.39	0.34	0.09	0.52
1.8	0.061	0.45	0.022	0.35	0.029	0.49	0.40	0.36	0.10	0.57
2.0	0.082	0.50	0.024	0.36	0.031	0.50	0.40	0.38	0.11	0.61
2.5	0.138	0.64	0.0258	0.37	0.031	0.50	0.41	0.40	0.13	0.68
3.0	0.194	0.74	0.0260	0.37	0.031	0.50	0.42	0.41	0.14	0.71
4.0	0.269	0.87	0.0264	0.38	0.031	0.50	0.42	0.41	0.14	0.74
∞	0.4	1.0	0.029	0.4	0.031	0.50	0.43	0.41	0.14	0.75

4.2.1.1 Side ratio a/b < 0.5

The required wall thickness is:

$$s = \sqrt{\frac{p \cdot a^2}{3\sigma_{zul}}},$$
(7)

and the maximum deflection is:

$$f = \frac{p \cdot a^4}{k \cdot 32 \cdot E_c \cdot s^3}.$$
 (8)

The factor k is to be chosen between 1 (for a < b) and 2 (for a/b $\approx 0.5)$

4.2.1.2 Side ratio $0.5 \le a/b \le 2$

The minimum wall thickness results from:

$$s = \sqrt{\frac{\beta_2 \cdot p \cdot b^2}{\sigma_{zul}}}$$
(9)

and the maximum deflection is:

$$f = \frac{\alpha_2 \cdot p \cdot b^4}{E_c \cdot s^3}.$$
 (10)

The values for β_2 and α_2 to be taken from Table 1.

4.2.1.3 Side ratio a/b > 2

The wall thicknesses result from:

$$s = \sqrt{\frac{p \cdot b^2}{2.5 \cdot \sigma_{zul}}}, \qquad (11)$$

and the maximum deflection is:

$$f = \frac{p \cdot b^4}{35 \cdot E_c \cdot s^3}.$$
 (12)

4.2.2 Calculation of the edge strengthening

The deflection of the edge strengthening is to be calculated as a mean between freely supported (f = $\frac{5}{384}$...) and fixed beam (f = $\frac{1}{384}$) with line lead. The edge strengthening takes up 1/5th of the wall load as line load. To allow the edge strengthening to

be assumed as a fixed support, its deflection must not be greater than 1 % of the length or height, the shorter distance being decisive. The deflection is calculated according to:

$$f = \frac{p \cdot b \cdot a^4}{1280 \cdot E \cdot J}.$$
(13)

Resulting from:

$$\frac{p}{2 \cdot 5} \cdot \frac{\left(\frac{5}{384} + \frac{1}{384}\right)}{2} = \frac{p}{10} \cdot \frac{1}{128}$$

The maximum moment in the edge strengthening amounts to:

$$M = \frac{p \cdot b \cdot a^2}{100}.$$
 (14)

From this we obtain for W:

$$W = \frac{\mathbf{p} \cdot \mathbf{b} \cdot \mathbf{a}^2}{100 \cdot \sigma_{zul}}.$$
 (15)

Frequently the deflection f is given for reasons of design. In this case the formula

$$J = \frac{p \cdot b \cdot a^4}{1280 \cdot E \cdot f}.$$
 (16)

applies.

4.3 Tanks with all around, strengthenings resting evenly on a flat surface

This construction is preferably used for large tanks. The wall thicknesses have to be calculated individually for each panel. The heights of the panels can be determined so that, as far as possible, equal wall thicknesses result. On the other hand the panel heights may be fixed so that each strengthening beam is subjected to an equal load. The weight of the strengthenings must not represent an undue additional load upon the tank wall. If necessary they have to be supported independently from the tank wall.

4.3.1 Calculation of the side walls

The manner of calculation of the individual panels depends on their position and their side ratios. The free panel height b_n (n = 1,2,3 ...) is to be put for b in the formulae.

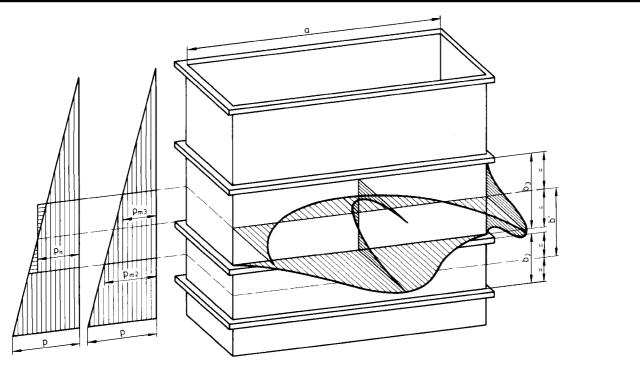


Figure 8. Moment curve.

4.3.1.1 Calculation of the upper panel

The relations stated under 4.2.1 apply. For this purpose, the pressure at the last strengthening beam under the edge strengthening is entered in the equations for surface pressure p. For b, the uppermost panel height is entered.

4.3.1.2 Calculation of the lower panels

For this calculation a mean value of excess pressure $\ensuremath{\mathsf{p}}_{\ensuremath{\mathsf{m}}}$ is assumed, Figure 8.

4.3.1.2.1 Side ratio a/b < 0.5

The calculation is as in subclause 4.2.1.1

4.3.1.2.2 Side ratio $0.5 \le a/b \le 2$

The formulae

$$s = \sqrt{\frac{\beta_3 \cdot p_m \cdot b^2}{\sigma_{zul}}}$$
(17)

and
$$f = \frac{\alpha_3 \cdot p_m \cdot b^4}{E_c \cdot s^3}$$
. (18)

apply.

The values for β_3 and α_3 are to be taken from Table 1.

4.3.1.2.3 Side ratio a/b > 2

The formulae

$$s = \sqrt{\frac{p_{m} \cdot b^{2}}{2 \cdot \sigma_{zul}}}$$
(19)

and f =
$$\frac{p_m \cdot b^4}{32 \cdot E_c \cdot s^3}$$

apply.

4.3.2 Calculation of the strengthening beams

The beams are calculated as a mean between freely supported and constrained bending beams. This statement is correct only for rigid corner joints of the strengthening beams. The corresponding panel load is obtained from an excess pressure p_n averaged over half the upper and lower panel height, Figure 8. The lowest beam is to be dimensioned so that its deflection does not exceed 1 % of the lowest panel height, in order to relieve the weld on the tank bottom. The equations for calculating the strengthening beams, with exception of the edge strengthening, are as follows:

$$f = \frac{p_n \cdot b' \cdot a^4}{128 \cdot E \cdot J}, \qquad (21)$$

$$M = \frac{p_n \cdot b' \cdot a^2}{10}, \qquad (22)$$

$$W = \frac{p_n \cdot b' \cdot a^2}{10 \cdot \sigma_{zul}} \,. \tag{23}$$

The edge strengthening is to be calculated as in subclause 4.2.2. For this purpose, the pressure at the last strengthening beam under the edge strengthening is entered in the equations for surface pressure p. For b, the uppermost panel height is entered.

4.4 Rectangular tank with yoke strengthening

This construction is to be chosen for tanks where the all around frame is no longer appropriate (very long tanks), Figure 9.

(20) 4.4.1 Calculation of the wall thicknesses of the side walls

The side walls are calculated using the formulae according to subclause 4.2.1

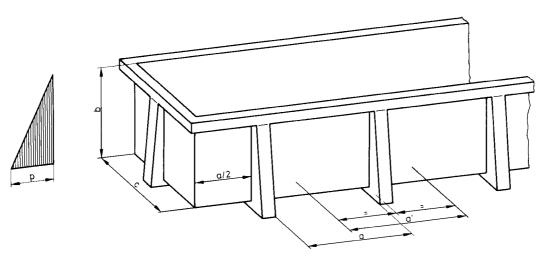


Figure 9. Tank with yoke strengthening (moment curve similar to figure 7).

4.4.2 Calculation of the tank bottom

4.4.2.1 Side ratio a/c < 0.5

The formulae

$$s = \sqrt{\frac{p \cdot a^2}{3 \cdot \sigma_{zul}}}$$
(24)

and
$$f = \frac{p \cdot a^4}{k \cdot 16 \cdot E_c \cdot s^3}$$
. (25)

apply.

The factor k is to be chosen between 1 (for a < c) and 2 (for a/c $\approx 0.5)$

4.4.2.2 Side ratio $0.5 \le a/c \le 2$

The formulae

$$s = \sqrt{\frac{\beta_3 \cdot p \cdot c^2}{\sigma_{zul}}}$$
(26)

and
$$f = \frac{\alpha_3 \cdot p \cdot c^4}{E_c \cdot s^3}$$
. (27)

apply.

4.4.2.3 Side ratio a/c > 2

The formulae

$$s = \sqrt{\frac{p \cdot c^2}{2 \cdot \sigma_{zul}}}$$
(28)

and
$$f = \frac{p \cdot c^4}{32 \cdot E_c \cdot s^3}$$
. (29)

apply.

4.4.3 Calculation of the yokes

The yokes are calculated as continuous beams on two supports with cantilevers on either side, the cantilevers being subject to triangular load and the beam being loaded with an area load at the level of the pressure at the bottom.

4.5 Calculation of the cover

The plate theory is to be used for the calculation. The cover is to be made preferably free of stiffening. If a cover is provided with stiffenings, these must be fitted on the top of the cover if the medium temperature is > 60° C. If the cover is insufficiently non-warping, diagonal stiffenings have to be fitted. The letter a always designates the longer side.

4.5.1 Freely supported cover, Figure 10

Loading: For example, moving load 0.0025 $N/mm^2 = 0.025$ bar. The formulae:

$$s = \sqrt{\frac{\beta_5 \cdot p \cdot c^2}{\sigma_{zul}}}$$
(30)

and
$$f = \frac{\alpha_5 \cdot p \cdot c^4}{E_c \cdot s^3}$$
 (31)

apply.

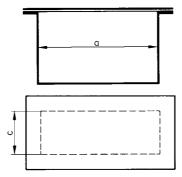


Figure 10. Reference dimensions.

4.5.2 Fixed cover

Figures 11 and 12 show reference dimensions for internal and external pressure.

4.5.2.1 Side ratio $1 \le a/c \le 2$ The formulae

i ne tormula

$$s = \sqrt{\frac{\beta_3 \cdot p \cdot c^2}{\sigma_{zul}}}$$
(32)

and
$$f = \frac{\alpha_3 \cdot p \cdot c^4}{E_c \cdot s^3}$$
 (33)

apply.

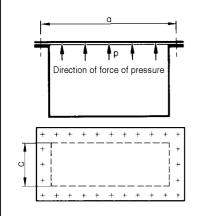


Figure 11. Reference dimensions for internal pressure.

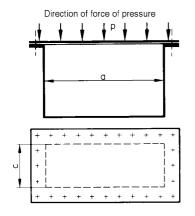


Figure 12. Reference dimensions of external pressure.

4.5.2.2 Side ratio a/c > 2

The formulae

$$s = \sqrt{\frac{p \cdot c^2}{2 \cdot \sigma_{zul}}}$$
(34)

and
$$f = \frac{p \cdot c^4}{32 \cdot E_c \cdot s^3}$$
 (35)

apply.

4.5.3 Stiffened cover, Figure 13

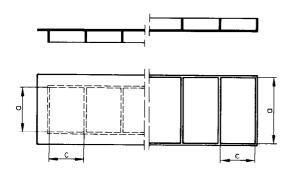


Figure 13. Reference Dimensions.

4.5.3.1 Calculation of wall thickness and deflection

The calculation is done according to subclause 4.5.2.1 and 4.5.2.2 respectively.

4.5.3.2 Calculation of cover stiffening

Formula

$$W = \frac{a^2 \cdot c \cdot p}{8 \cdot \sigma_{zul}} \,. \tag{36}$$

applies. Frequently the deflection is given for reasons of design. In this case the formula

$$J = \frac{p \cdot c \cdot 5 \cdot a^4}{384 \cdot E \cdot f}.$$
 (37)

applies.

4.6 Special cases

4.6.1 Elevated tanks

In cases where the tank does not rest evenly on the ground but stands in or on a supporting frame, the tank bottom is to be calculated according to 4.4.2.

4.6.2 Non-rigid designs

Owing to the very low rigidity of plastics, large area components frequently are not able to take up the external loading deriving from bending forces. If the deflection of a panel amounts to more than half the panel wall thickness, a considerable portion of the loading is absorbed by membrane forces, i.e. tensile forces. This means that for the calculation a distinction between several cases will have to be made which derives from a check of the expression

$$N = \frac{p \cdot b^4}{E_o \cdot s^4}$$
(38)

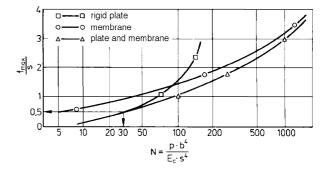


Figure 14. Regions of validity of plate and membrane theory.

4.6.2.1 Rigidity N ≤ 30

The relations specified in subclauses 4.2 and 4.6.1 apply.

4.6.2.2 Rigidity N > 30

The relations allowing for bending and stress apply. For a plate fixed on four sides with uniform area load and a side ratio a/b = 1 the following formulae apply:

$$s = \sqrt{A^2 + B} - A , \qquad (39)$$

where A =
$$\frac{\beta_3}{2\beta_4} \cdot b \sqrt{\frac{\sigma_{zul}}{E_c}}$$
 (40)

$$B = \frac{p \cdot b^2 \cdot \beta_3}{\sigma_{\text{zull}}}.$$
 (41)

$$f = \sqrt[3]{C + \sqrt{C^2 + D}}$$
, (42)

where C =
$$\frac{\alpha_4^3}{2} \cdot \frac{p \cdot b^4}{E_c \cdot s}$$
 (43)

$$D = \frac{\alpha_4^9 \cdot s^6}{27 \cdot \alpha_3^3}.$$
 (44)

4.6.2.3 Rigidity N > 1000

In the case of very high N values the membrane equations may be used. (For N = 1000 the error is about 6 % as against the formulation for N > 30 and a/b = 1).

The following formulae

$$\mathbf{s} = \beta_4 \cdot \mathbf{p} \cdot \mathbf{b} \cdot \sqrt{\frac{\mathsf{E}_c}{\alpha_{\text{zul}}^3}} \tag{45}$$

and
$$f = \alpha_4 \cdot \sqrt[3]{\frac{b^4 \cdot p}{s \cdot E_c}}$$
 (46)

apply.

The values for β_3 , β_4 and α_3 , α_4 are to be taken from Table 1.

5 Explanations

To subclauses 4.1.1 and 4.2.1.1:

In the equation for s the wall has been assumed as a beam fixed at both ends with uniform line load. This leads to factor 2 in the denominator. To provide better agreement with measured values, the factor was increased to 2.5 and 3 respectively.

In the equation for the deflection a factor 32 results in the denominator when a beam fixed at both ends with uniform line load is assumed. However, it is possible here to use the plate equations which exactly correspond to the load case and lead to the factor 68 if a/b \approx 0.5. An additional factor k was introduced, therefore, which, depending on a/b, gives rise to satisfactorily accurate results.

To subclauses 4.1.2, 4.2.1.2 and 4.3.1.2.3:

The equations for s and f and also the coefficients α and β have been derived from various sources; see clause 6 "Literature".

To subclauses 4.1.3:

The tank wall here is considered as a cantilever with triangular load.

To subclause 4.2.1.3:

The tank wall here is considered on the one hand as a fixed beam and on the other hand as a freely supported beam with triangular load.

To subclause 4.2.2:

The bending moment of a beam with line load, which is considered as a mean between freely supported and fixed, is:

$$M = \frac{F \cdot a}{10} . \tag{47}$$

The tank wall is considered as fixed at the bottom and as freely supported at the edge strengthening. Consequently the edge load is 1/5th of the wall load

$$\mathsf{F} = \frac{\mathsf{p} \cdot \mathsf{a} \cdot \mathsf{b}}{2} \cdot \frac{1}{5} \,, \tag{48}$$

with p being the pressure at the bottom.

This leads to

$$M = \frac{p \cdot a^2 \cdot b}{10 \cdot 10}.$$
(49)

The same procedure is followed for the deflection [see equation (13)].

To subclause 4.3.1.2.3:

Here the equation for the uniformly loaded plate fixed on all sides is on hand.

6 Literature

Bittner, E.: Plates and Tanks (Platten und Behälter), Springer Verlag, Wien, New York 1965

Timoshenko, S.: Theory of Plates and Shells. McGraw Hill Book Comp. New York/London 1959

Stieglat, K., and H. Wippel: Massive plates (Massive Platten), Verlag W. Ernst & Sohn, Berlin/München 1976

Bouche, Ch.: Dubbels Pocketbook for Engineering (Dubbels Handbuch für den Maschinenbau) Springer Verlag Berlin/ Heidelberg/New York 1966

Kunz, A.: Formulae collection (Formelsammlung) VGB Technische Vereinigung der Großkraftwerksbetreiber e.V. 1976

Franz, G.: Concrete-Calender (Beton-Kalender), Part 1, Verlag Ernst & Sohn, Berlin/München/Düsseldorf 1976

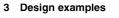
Calculation of thermoplastic tanks and apparatus Rectangular tanks, structural details

Contents:

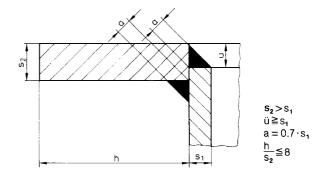
- 1 Scope
- 2 General design principles
- 3 Design examples
- 3.1 Upper all-around edge strengthenings
- 3.2 Horizontal all-around tank wall strengthenings
- 3.3 Joints between shell and tank bottom
- 3.4 Vertical tank edges
- 3.5 Partition walls
- 3.6 Structural measures to take up expansion differences between strengthening and tank wall
- 3.7 Tank nozzles

1 Scope

This directive describes the design of structural details on rectangular tanks. With regard to welded joints it is a supplement to: Data Sheet DVS 2205 Part 3 "Welded Joints", the validity of which is maintained in full.


The compilation is based on the utilization of many years of experience. The examples correspond to prior art and make no claim of completeness. They are no substitute for the necessary checking of the design by calculation.

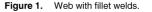
2 General design principles


2.1 The general rules for design and dimensioning in welding technique as stated in Data Sheet 2205 Part 3 apply.

2.2 Significant differences in expansion between strengthening and wall, caused by temperature changes, must be allowed for by structural measures.

2.3 Any stresses on nozzles caused by fittings and pipelines (for example through thermal expansion and weights \rightarrow masses/ weights) are to be avoided through the use of compensators or appropriate arrangement and installation of the pipelines.

3.1 Upper all-around edge strengthenings



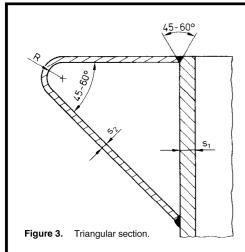
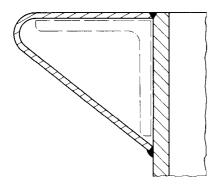
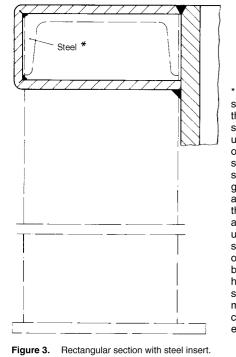
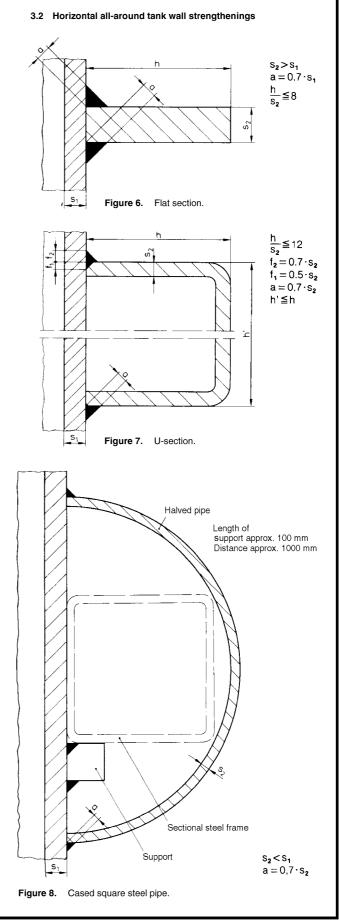


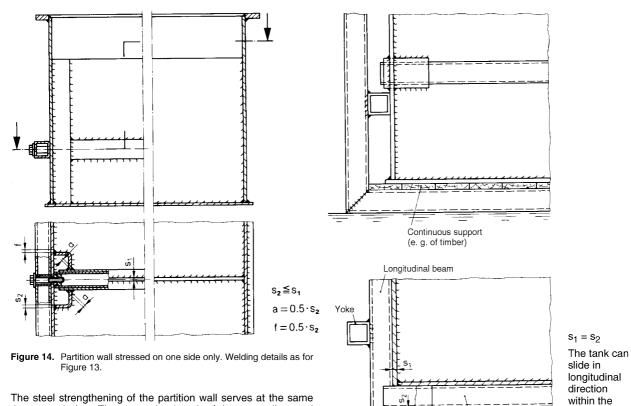
Figure 2. Web with fillet and single-V weld.

This publication has been drawn up by a group of experienced specialists working in an honorary capacity and its consideration as an important source of information is recommended. The user should always check to what extent the contents are applicable to his particular case and whether the version on hand is still valid. No liability can be accepted by the Deutscher Verband für Schweißtechnik e.V., and those participating in the drawing up of the document.

DVS, Technical Committee, Working Group "Plastics, Welding and Adhesive Bonding"

Page 2 to DVS 2205-5 Supplement



Figure 4. Triangular section with steel frame insert.

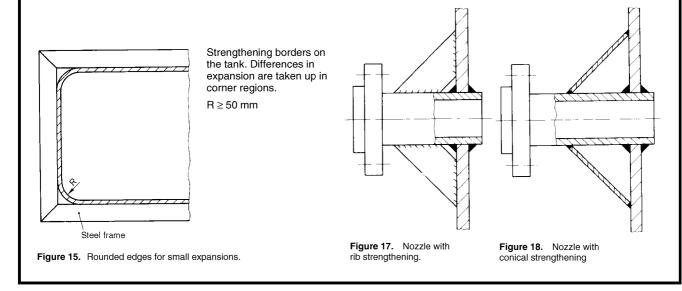
* For the supporting frame the most varied sections may be used. In the case of heavy strengthening section and greater vertical aditional loads the forces arising are to be taken up by vertical supports. Instead of welding by bending using a heated tool simple bending may also be considered e.g. for PVC.

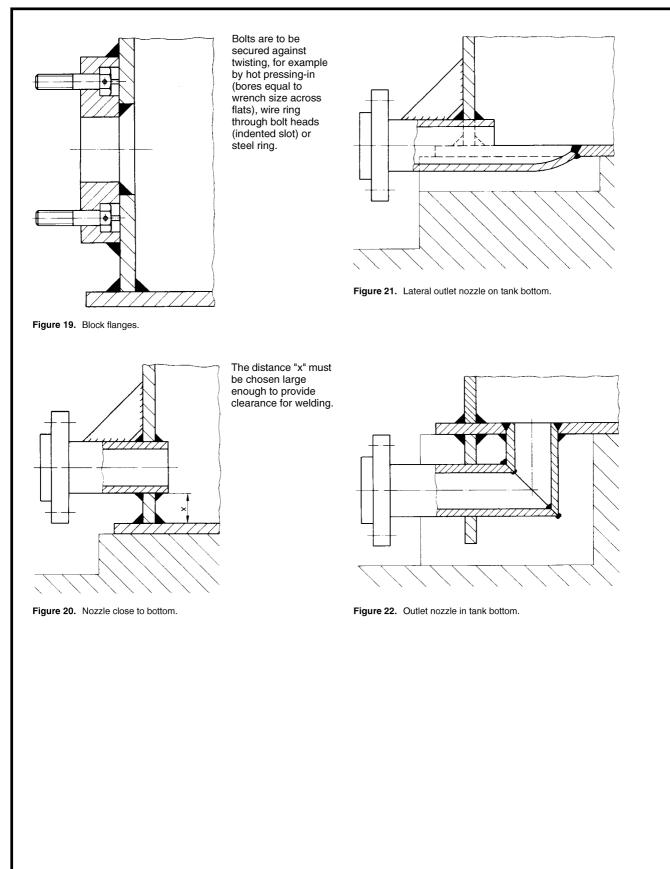
The steel strengthening of the partition wall serves at the same time as a tie bar. The supporting length of the outer all-around frame is thereby diminished.

The partition wall serves at the same time as a tie bar. The weld connection is to be dimensioned accordingly.

Figure 16. Longitudinal and end beam independent of each other.

End beam


steel


structure.

3.6 Structural measures to take up differences in expansion between stengthening and tank wall

3.7 Tank nozzles

Nozzles of small nominal bore (NW \leq 50) require strengthening in the form of ribs, cones or the like.

